Skip to main content

Accumulation of fatty acids and their carnitine derivatives during myocardial ischemia

  • Chapter
The Carnitine System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

Abstract

Fatty acids are important substrates for the heart. Under normal conditions fatty acids are continuously extracted from the extracellular space, transported through the cytoplasm to the mitochondria by fatty acid-binding proteins (FABP), and converted to fatty acyl CoA. Part of acyl CoA is used for the formation of complex lipids (triacylglycerols and phospholipids), the majority of the acyl residues is channeled across the mitochondrial inner membrane into the mitochondrial matrix with the use of a carnitine-mediated transport system [1].

“The intracellular enzymatic machinery avidly converts fatty acids, keeping the cellular level as low as possible. The latter condition promotes diffusion of fatty acids from the extracellular compartment to the cytoplasm of the cardiomyocyte by creating a concentration gradient across the sarcolemma and protects cellular structures against deleterious high levels of fatty acyl moieties.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van der Vusse GJ, Glatz JFC, Stam HCG, Reneman RS. Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–940.

    PubMed  Google Scholar 

  2. Braun JEA, Severson DK. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem J 1992; 287: 337–347.

    PubMed  CAS  Google Scholar 

  3. Idell-Wenger JA, Neely JR. Regulation of uptake and metabolism of fatty acids by muscles. In: Dietschy JM, Gotto AM, Ontko JA, editors. Disturbances in lipid and lipoprotein metabolism. Maryland: Am Phys Soc, 1978: 269–285.

    Google Scholar 

  4. Van der Vusse GJ, De Groot MJM. Interrelationship between lactate and cardiac fatty acid metabolism. Mol Cell Biochem 1992; 116: 11–17.

    Article  PubMed  Google Scholar 

  5. Van der Vusse GJ, Prinzen FW, Reneman RS. Are tissue non-esterified fatty acids (NEFA) involved in the impairment of biochemical and mechanical processes during acute regional ischemia in the heart. In: Ferrari R, Katz AM, Shug A, Visioli O, editors. Myocardial ischemia and lipid metabolism. New York: Plenum Press, 1984: 171–184.

    Chapter  Google Scholar 

  6. Hunneman DH, Schweickhardt C. Mass fragmentographic determination of myocardial free fatty acids. J Mol Cell Cardiol 1982; 14: 339–351.

    Article  PubMed  CAS  Google Scholar 

  7. Garland PB, Randle PJ. Regulation of glucose uptake by muscle. Biochem J 1964; 93: 678–687.

    PubMed  CAS  Google Scholar 

  8. Oram JF, Bennetch SL, Neely JR. Regulation of fatty acid utilization in isolated perfused rat hearts. J Biol Chem 1973; 248: 5299–52309.

    PubMed  CAS  Google Scholar 

  9. Van der Vusse GJ, Roemen THM, Reneman RS. Assessment of fatty acids in dog left ventricular myocardium. Biochim Biophys Acta 1980; 617: 347–352.

    Article  PubMed  Google Scholar 

  10. Idell-Wenger JA, Grotyohann LW, Neely JR. Coenzyme A and carnitine distribution in normal and ischemic hearts. J Biol Chem 1978; 253: 4310–4318.

    PubMed  CAS  Google Scholar 

  11. Pieper GM, Salhany JM, Murray WJ, Wu ST, Eliot RS. Lipid-mediated impairment of normal energy metabolism in the isolated perfused diabetic rat heart studied by phosphorus-31 NMR and chemical extraction. Biochim Biophys Acta 1984; 803: 229–240.

    Article  PubMed  CAS  Google Scholar 

  12. Lopaschuk GD, Neely JR. Stimulation of myocardial coenzyme A degradation by fatty acids. Am J Physiol 1987; 253: H41–H46.

    PubMed  CAS  Google Scholar 

  13. Neely JR, Feuvray D. Metabolic products and myocardial ischemia. Am J Pathol 1981; 102: 282–291.

    PubMed  CAS  Google Scholar 

  14. Moore KH, Bonema JD, Solomon FJ. Long-chain acyl-CoA and acylcarnitine hydrolase activities in normal and ischemic rabbit heart. J Mol Cell Cardiol 1984; 16: 905–913.

    Article  PubMed  CAS  Google Scholar 

  15. Ferrari R, Di Lisa F, De Jong JW et al. Prolonged propionyl-L-carnitine pre-treatment of rabbit: Biochemical, hemodynamic and electrophysiological effects on myocardium. J Mol Cell Cardiol 1992; 24: 219–232.

    Article  PubMed  CAS  Google Scholar 

  16. Reibel DK, Uboh CE, Kent RL. Altered coenzyme A and carnitine metabolism in pressure-overload hypertrophied hearts. Am J Physiol 1983; 244: H839–H843.

    PubMed  CAS  Google Scholar 

  17. Shug AL, Thomson JH, Folts JD, Bittar N, Klein MI, Koke JR, Huth PJ. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 1978; 187: 25–33.

    Article  PubMed  CAS  Google Scholar 

  18. Liedtke AJ, Nellis SN. Effects of carnitine in ischemic and fatty acid supplemented swine hearts. J Clin Invest 1979; 64: 440–447.

    Article  PubMed  CAS  Google Scholar 

  19. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62: 535–542.

    Article  PubMed  CAS  Google Scholar 

  20. Stearns SB. Carnitine content of skeletal and cardiac muscle from genetically diabetic (db/db) and control mice. Biochem Med 1983; 29: 57–63.

    Article  PubMed  CAS  Google Scholar 

  21. Paulson DJ, Schmidt MJ, Romens J, Shug AL. Metabolic and physiological differences between zero-flow and low-flow myocardial ischemia: effects of L-acetylcarnitine. Basic Res Cardiol 1984; 79: 551–561.

    Article  PubMed  CAS  Google Scholar 

  22. McHowat J, Yamada KA, Saffitz JE, Corr PB. Subcellular distribution of endogenous long chain acyl carnitines during hypoxia in adult canine myocytes. Cardiovasc Res 1993; 27: 1327–1243.

    Article  Google Scholar 

  23. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 1993; 87: 972–981.

    Article  PubMed  CAS  Google Scholar 

  24. Broderick TL, Quinney HA, Lopaschuk GD. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart. J Biol Chem 1992; 267: 3758–3763.

    PubMed  CAS  Google Scholar 

  25. Moore KH, Koen AE, Hull FE. β-Hydroxy fatty acid production by ischemic rabbit heart. Distribution and chemical states. J Clin Invest 1982; 69: 377–383.

    Article  PubMed  CAS  Google Scholar 

  26. Corr PB, Creer MH, Yamada KA, Saffitz JE, Sobel BE. Prophylaxis of early ventricular fibrillation by inhibition of acyl carnitine accumulation. J Clin Invest 1989; 83: 927–936.

    Article  PubMed  CAS  Google Scholar 

  27. Suzuki Y, Kamikawa T, Kobayashi A, Masumura Y, Yamazaki N. Effects of L-carnitine on tissue levels of acyl carnitine, acyl coenzyme A and high energy phosphate in ischemic dog heart. Jpn Circ J 1981; 45: 687–694.

    Article  PubMed  CAS  Google Scholar 

  28. Shug AL. Control of carnitine-related metabolism during myocardial ischemia. Tex Rep Biol Med 1979; 39: 409–428.

    PubMed  CAS  Google Scholar 

  29. Vik-Mo H, Mjos OD, Neely JR, Maroko PR, Ribeiro LGT. Limitation of myocardial infarct size by metabolic interventions that reduce accumulation of fatty acid metabolites in ischemic myocardium. Am Heart J 1986; 111: 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  30. Molaparast-Saless F, Nellis SH, Liedtke AJ. The effects of propionylcarnitine taurine on cardiac performance in aerobic and ischemic myocardium. J Mol Cell Cardiol 1988; 20: 63–74.

    Article  PubMed  CAS  Google Scholar 

  31. Regitz V, Bossaller C, Strasser R, Müller M, Shug AL, Fleck E. Metabolic alterations in end-stage and less severe heart failure — myocardial carnitine decrease. J Clin Chem Clin Biochem 1990; 28: 611–617.

    PubMed  CAS  Google Scholar 

  32. Masumura Y, Kobayashi A, Yamazaki N. Myocardial free carnitine and fatty acylcarnitine levels in patients with chronic heart failure. Jpn Circ J 1990; 54: 1471–1476.

    Article  PubMed  CAS  Google Scholar 

  33. Böhles H, Noppeney Th, Akcetin Z, Rein J, Von der Emde J. The effect of preoperative L-carnitine supplementation on myocardial metabolism during aorta-coronary bypass surgery. Curr Ther Res 1986; 39: 429–435.

    Google Scholar 

  34. Hütter JF, Alves C, Soboll S. Effects of hypoxia and fatty acids on the distribution of metabolites in rat heart. Biochim Biophys Acta 1990; 1016: 244–252.

    Article  PubMed  Google Scholar 

  35. Oram JF, Wenger JI, Neely JR. Regulation of long chain fatty acid activation in heart muscle. J Biol Chem 1975; 250: 73–78.

    PubMed  CAS  Google Scholar 

  36. Opie LH, Owen P, Riemersma RA. Relative rates of oxidation of glucose and free fatty acids by ischaemic and non-ischaemic myocardium after coronary artery ligation in the dog. Eur J Clin Invest 1973; 3: 419–435.

    Article  PubMed  CAS  Google Scholar 

  37. Van der Vusse GJ, Roemen THM, Prinzen FW, Coumans WA, Reneman RS. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res 1982; 50: 538–546.

    Article  PubMed  Google Scholar 

  38. Pauly DF, Kirk KA, McMillin JB. Carnitine palmitoyltransferase in cardiac ischemia. A potential site of altered fatty acid metabolism. Circ Res 1991; 68: 1085–1094.

    Article  PubMed  CAS  Google Scholar 

  39. Moore KH, Radloff JR, Hull FE, Sweeley CC. Incomplete fatty acid oxidation by ischemic heart: β-hydroxy fatty acid production. Am J Physiol 1980; 239: H257–H265.

    PubMed  CAS  Google Scholar 

  40. Kotaka K, Miyazaki Y, Ogawa K, Satake T, Sugiyama S, Ozawa T. Reversal of ischemia-induced mitochondrial dysfunction after coronary reperfusion. J Mol Cell Cardiol 1982; 14: 223–231.

    Article  PubMed  CAS  Google Scholar 

  41. Lochner A, Van Niekerk I, Kotzé JCN. Mitochondrial acyl-CoA, adenine nucleotide translocase activity and oxidative phosphorylation in myocardial ischaemia. J Mol Cell Cardiol 1981; 13: 991–997.

    Article  PubMed  CAS  Google Scholar 

  42. Shrago E, Shug AL, Sul H, Bittar N, Folts JD. Control of energy production in myocardial ischemia. Circ Res 1976; 38(Suppl I): 75–79.

    Google Scholar 

  43. Feuvray D, Idell-Wenger JA, Neely JR. Effects of ischemia on rat myocardial function and metabolism in diabetes. Circ Res 1979; 44: 322–329.

    Article  PubMed  CAS  Google Scholar 

  44. Hekimian G, Feuvray D. Reduction of ischemia-induced acyl carnitine accumulation by TDGA and its influence on lactate dehydrogenase release in diabetic rat hearts. Diabetes 1986; 35: 906–910.

    Article  PubMed  CAS  Google Scholar 

  45. Neely JR, Garber D, McDonough K, Idell-Wenger J. Relationship between ventricular function and intermediates of fatty acid metabolism during myocardial ischemia: effects of carnitine. In: Winbury MM, Abiko Y, editors. Persp Cardiovasc Res vol. 3. Ischemic myocardium and antianginal drugs. New York: Raven Press, 1979: 225–239.

    Google Scholar 

  46. Feuvray D, Plouët J. Relationhip between structure and fatty acid metabolism in mitochondria isolated from ischemic rat hearts. Circ Res 1981; 48: 740–747.

    Article  PubMed  CAS  Google Scholar 

  47. Lamers JMJ, De Jonge-Stinis JT, Verdouw PD, Hülsmann WC. On the possible role of long chain fatty acyl carnitine accumulation in producing functional and calcium permeability changes in membranes during myocardial ischaemia. Cardiovasc Res 1987; 21: 313–322.

    Article  PubMed  CAS  Google Scholar 

  48. Wu J, McHowat J, Saffitz JE, Yamada KA, Corr PB. Inhibition of gap junctional conductance by long-chain acylcarnitines and their preferential accumulation in junctional sarcolemma during hypoxia. Circ Res 1993; 72: 879–889.

    Article  PubMed  CAS  Google Scholar 

  49. Chien KR, Han A, Sen A, Buja LM, Willerson JT. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Circ Res 1984; 54: 313–322.

    Article  PubMed  CAS  Google Scholar 

  50. Das DK, Engelman RM, Rousou JA, Breyer RH, Otani H, Lemeshow S. Role of membrane phospholipids in myocardial injury induced by ischemia and reperfusion. Am J Physiol 1986; 251: H71–H79.

    PubMed  CAS  Google Scholar 

  51. Fox KAA, Abendschein DR, Ambos HD, Sobel BE, Bergmann SR. Efflux of metabolized and nonmetabolized fatty acid from canine myocardium. Implications for quantifying myocardial metabolism tomographically. Circ Res 1985; 57: 232–243.

    CAS  Google Scholar 

  52. Miura I, Hashizume H, Akutsu H, Hara Y, Abiko Y. Accumulation of nonesterified fatty acids in the dog myocardium during coronary artery occlusion determined by a method using 9-anthryldiazomethane. Heart Vessels 1987; 3: 190–194.

    Article  PubMed  CAS  Google Scholar 

  53. Prinzen FW, Van der Vusse GJ, Arts T, Roemen THM, Coumans WA, Reneman RS. Accumulation of nonesterified fatty acids in ischemic canine myocardium. Am J Physiol 1984; 247: H264–H272.

    PubMed  CAS  Google Scholar 

  54. Van Bilsen M, Van der Vusse GJ, Willemsen PHM, Coumans WA, Roemen THM, Reneman RS. Lipid alterations in isolated, working rat hearts during ischemia and reperfusion: Its relation to myocardial damage. Circ Res 1989; 64: 304–314.

    Article  PubMed  Google Scholar 

  55. Weglicki WB, Owens K, Urschel CW, Serur JR, Sonnenblick EH. Hydrolysis of myocardial lipids during acidosis and ischemia. Rec Adv Stud Cardiac Struct Metab 1973; 3: 781–793.

    CAS  Google Scholar 

  56. Weishaar RE, Sarma JSM, Maruyama Y, Fisher R, Bing RJ. Regional blood flow, contractility and metabolism in early myocardial infarction. Cardiology 1977; 62: 2–20.

    Article  PubMed  CAS  Google Scholar 

  57. De Groot MJM, Coumans WA, Willemsen PHM, Van der Vusse GJ. Substrate-induced changes in the lipid content of ischemia and reperfused myocardium. Its relation to hemody-namic recovery. Circ Res 1993; 72: 176–186.

    Google Scholar 

  58. Van Bilsen M. The significance of myocardial non-esterified fatty acid accumulation during ischemia and reperfusion [dissertation]. Maastricht, The Netherlands: Univ of Limburg, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van der Vusse, G.J. (1995). Accumulation of fatty acids and their carnitine derivatives during myocardial ischemia. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics