Skip to main content

Utilization of propionyl-L-carnitine for the treatment of heart failure

  • Chapter
The Carnitine System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

Abstract

Heart failure is a common and disabling disease with a poor prognosis, but it can be easily diagnosed and recent data show that treatment of chronic heart failure reduces mortality, morbidity and improves quality of life [1, 2]. The usual treatment of chronic heart failure is with angiotensin-converting enzyme inhibitors, diuretics and digitalis. Other drugs are often used such as calcium antagonists, vasodilators, antiarrhythmics, positive inotropic agents, etc. Basically, all these compounds aim at reducing the progression of the disease, improving the hemodynamic profile of patients and/or reducing the generalized neuroendocrine response.

“Studies in carefully selected homogenous small groups of patients show that oral administration of propionyl-L-carnitine improves exercise capacity and skeletal muscle metabolism of patients with heart failure (classes II and III of NYHA). This provides a logical basis for individualizing therapy in order to improve exercise tolerance and quality of life in patients with heart failure.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garg R, Packer M, Pitt B, Yusuf S. Heart failure in the 1990s: Evolution of a major public health problem in cardiovascular medicine. J Am Coll Cardiol 1993; 22(Suppl A): 3A–5A.

    Article  PubMed  CAS  Google Scholar 

  2. Bourassa M, Gurne O, Bangdiwala SI et al. Natural history and patterns of current practice in heart failure. The Studies of Left Ventricular Dysfunction (SOLVD) Investigators. J Am Coll Cardiol 1993; 22(Suppl A): 14A–19A.

    Article  PubMed  CAS  Google Scholar 

  3. Cohn JN, Archibald DG, Ziesche S et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure: results of a Veterans Administration Cooperative Study. N Engl J Med 1986; 314: 1547–1552.

    Article  PubMed  CAS  Google Scholar 

  4. The CONSENSUS Trial Study Group. Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 1987; 316: 1429-1435.

    Google Scholar 

  5. Cohn JN, Johnson G, Ziesche S et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303–310.

    Article  PubMed  CAS  Google Scholar 

  6. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293-302.

    Google Scholar 

  7. The SOLVD Investigators. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 1992; 327: 685-691.

    Google Scholar 

  8. Pfeffer M, Braunwald E, Moye LA et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: results of the survival and ventricular enlargement trial. The SAVE investigators. N Engl J Med 1992; 327: 669–677.

    Article  PubMed  CAS  Google Scholar 

  9. Swedberg K, Held P, Kjekshus J, Rasmussen K, Ryden L, Wedel H, for the CONSENSUS II Study Group. Effects of the early administration of enalapril on mortality in patients with acute myocardial infarction: results of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). N Engl J Med 1992; 327: 678–684.

    Article  PubMed  CAS  Google Scholar 

  10. Yusuf S, Pepine CJ, Garces C et al. Effect of enalapril on myocardial infarction and unstable angina in patients with low ejection fractions. Lancet 1992; 340: 1173–1178.

    Article  PubMed  CAS  Google Scholar 

  11. Kleber FX, Niemoller L, Doering W. Impact of converting enzyme inhibition on progression of chronic heart failure: results of the Munich Mild Heart Failure Trial. Br Heart J 1992; 67: 289–296.

    Article  PubMed  CAS  Google Scholar 

  12. Lindsay DC, Poole-Wilson PA. Angiotensin-converting enzyme inhibitors or vasodilators as therapy in chronic heart failure: a review of the trials. J Cardiovasc Pharmacol 1992; 19(Suppl 4): S45–S55.

    Article  Google Scholar 

  13. Wilson JR, Martin JL, Schwartz D, Ferraro N. Exercise intolerance in patients with chronic heart failure: role of impaired nutritive flow to skeletal muscle. Circulation 1984; 69: 1079–1087.

    Article  PubMed  CAS  Google Scholar 

  14. Lipkin DP, Poole-Wilson PA. Symptoms limiting exercise in chronic heart failure. Br Med J Clin Res Ed 1986; 292: 1030–1031.

    Article  PubMed  CAS  Google Scholar 

  15. Wilson JR, Mancini DM. Factors contributing to exercise limitation of heart failure. J Am Coll Cardiol 1993; 22(Suppl A): 93A–98A.

    Article  PubMed  CAS  Google Scholar 

  16. Lipkin DP, Canepa-Anson R, Stephens MR, Poole-Wilson PA. Factors determining symptoms in heart failure: comparison of fast and slow exercise tests. Br Heart J 1986; 55: 439–445.

    Article  PubMed  CAS  Google Scholar 

  17. Poole-Wilson PA. Relation of pathophysiologic mechanisms to outcome in heart failure. J Am Coll Cardiol 1993; 22(Suppl A): 22A–29A.

    Article  PubMed  CAS  Google Scholar 

  18. Drexler H, Banhardt U, Meinertz T, Wollschlager H, Lehmann M, Just H. Contrasting peripheral short-term and long-term effects of converting enzyme inhibition in patients with congestive heart failure. A double-blind, placebo-controlled trial. Circulation 1989; 79: 491–502.

    CAS  Google Scholar 

  19. Mancini DM, Davis L, Wexler JP, Chadwick B, LeJemtel TH. Dependence of enhanced maximal exercise performance on increased peak skeletal muscle perfusion during long-term captopril therapy in heart failure. J Am Coll Cardiol 1987; 10: 845–850.

    Article  PubMed  CAS  Google Scholar 

  20. Sullivan MJ, Knight JD, Higginbotham MB, Cobb FR. Relation between central and peripheral hemodynamics during exercise in patients with chronic heart failure. Muscle blood flow is reduced with maintenance of arterial perfusion pressure. Circulation 1989; 80: 769–781.

    Article  PubMed  CAS  Google Scholar 

  21. LeJemtel TH, Maskin CS, Lucido D, Chadwick BJ. Failure to augment maximal limb blood flow in response to one-leg versus two-leg exercise in patients with severe heart failure. Circulation 1986; 74: 245–251.

    Article  Google Scholar 

  22. Anand IS, Ferrari R, Kalra GS, Wahi PL, Poole-Wilson PA, Harris P. Edema of cardiac origin. Studies of body water and sodium, renal function, hemodynamic indexes, and plasma hormones in untreated congestive cardiac failure. Circulation 1989; 80: 299–305.

    Article  PubMed  CAS  Google Scholar 

  23. Wilson JR, Ferraro N, Wiener DH. Effect of the sympathetic nervous system on limb circulation and metabolism during exercise in patients with heart failure. Circulation 1985; 72: 72–81.

    Article  PubMed  CAS  Google Scholar 

  24. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med 1994; 330: 1431–1438.

    Article  PubMed  CAS  Google Scholar 

  25. Weiner DH, Fink LI, Maris J, Jones RA, Chance B, Wilson JR. Abnormal skeletal muscle bioenergetics during exercise in patients with heart failure: role of reduced muscle blood flow. Circulation 1986; 73: 1127–1136.

    Article  Google Scholar 

  26. Regensteiner JG, Wolfel EE, Brass E et al. Chronic changes in skeletal muscle histology and function in peripheral arterial disease. Circulation 1993; 87: 413–421.

    Article  PubMed  CAS  Google Scholar 

  27. Sullivan MJ, Higginbotham MB, Cobb FR. Exercise training in patients with severe left ventricular dysfunction: hemodynamic and metabolic effects. Circulation 1988; 78: 506–515.

    Article  PubMed  CAS  Google Scholar 

  28. Coats AJ, Adamopoulos S, Radaelli A et al. Controlled trial of physical training in chronic heart failure. Exercise performance, hemodynamics, ventilation, and autonomie function. Circulation 1992; 85: 2119–2131.

    Article  PubMed  CAS  Google Scholar 

  29. Wilson JR, Fink L, Maris J et al. Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance. Circulation 1985; 71: 57–62.

    Article  PubMed  CAS  Google Scholar 

  30. Mancini DM, Ferraro N, Tuchler M, Chance B, Wilson JR. Detection of abnormal calf muscle metabolism in patients with heart failure using phosphorus-31 nuclear magnetic resonance. Am J Cardiol 1988; 62: 1234–1240.

    Article  PubMed  CAS  Google Scholar 

  31. Massie B, Conway M, Yonge R et al. Skeletal muscle metabolism in patients with congestive heart failure: relation to clinical severity and blood flow. Circulation 1987; 76: 1009–1019.

    Article  PubMed  CAS  Google Scholar 

  32. Massie BM, Conway M, Rajagopalan B et al. Skeletal muscle metabolism during exercise under ischemic conditions in congestive heart failure. Evidence for abnormalities unrelated to blood flow. Circulation 1988; 78: 320–326.

    CAS  Google Scholar 

  33. Minotti JR, Johnson EC, Hudson TL et al. Skeletal muscle response to exercise training in congestive heart failure. J Clin Invest 1990; 86: 751–758.

    Article  PubMed  CAS  Google Scholar 

  34. Ferrari R, Pasini E, de Giuli F, Opasich C, Cobelli F, Tavazzi L. Limb uptake of substrate in patients with congestive heart failure (CHF). Can J Cardiol 1994: 10: 73.

    Google Scholar 

  35. Lopaschuk GD, Wambolt RB, Barr RL. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 1993; 264: 135–144.

    PubMed  CAS  Google Scholar 

  36. Wilson JR, Mancini DM, Ferraro N, Egler J. Effect of dichloroacetate on the exercise performance of patients with heart failure. J Am Coll Cardiol 1988; 12: 1464–1469.

    Article  PubMed  CAS  Google Scholar 

  37. Wargovich TJ, MacDonald RG, Hill JA, Feldman RL, Stacpoole PW, Pepine CJ. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol 1988; 61: 65–70.

    Article  PubMed  CAS  Google Scholar 

  38. Bersin R, Kwasman M, Wolfe C et al. Improved hemodynamic function in congestive heart failure with the metabolic agent sodium dichloroacetate (DCA). J Am Coll Cardiol 1990; 15(Suppl A): 157A (Abstr).

    Article  Google Scholar 

  39. Sullivan MJ, Green HJ, Cobb FR. Altered skeletal muscle metabolic response to exercise in chronic heart failure: relation to skeletal muscle aerobic enzyme activity. Circulation 1991; 84: 1597–1607.

    Article  PubMed  CAS  Google Scholar 

  40. Drexler H, Funke E, Riede U. The oxidative enzyme activity decreases in all fiber types in skeletal muscle of patients with chronic heart failure. Circulation 1991; 84(Suppl II): II–74 (Abstr).

    Google Scholar 

  41. Mancini DM, Nazzaro D, Georgopoulos L, Wagner N, Mullen JL, Wilson JR. Skeletal muscle atrophy contributes to exercise intolerance in heart failure. J Am Coll Cardiol 1991; 17(Suppl A): 88A (Abstr).

    Google Scholar 

  42. Marzo A, Cardace G, Corbelleta C, Bassani E, Morabito E, Arrigoni-Martelli E. Homeos-tatic equilibrium of L-carnitine family before and after i.v. administration of propionyl-L-carnitine in humans, dogs and rats. Eur J Drug Metab Pharmacokinet 1991; 3: 357–363.

    Google Scholar 

  43. Siliprandi N, Di Lisa F, Menabö R. Propionyl-L-carnitine: biochemical significance and possible role in cardiac metabolism. Cardiovasc Drugs Ther 1991; 5(Suppl 1): 11–15.

    Article  PubMed  Google Scholar 

  44. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL. Protection of the ischaemic myocardium by propionyl-L-carnitine: effects on the recovery of cardiac output after ischaemia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc Res 1986; 20: 536–541.

    Article  PubMed  CAS  Google Scholar 

  45. Hülsmann WC. Biochemical profile of propionyl-L-carnitine. Cardiovasc Drugs Ther 1991; 5(Suppl 1): 7–9.

    Article  PubMed  Google Scholar 

  46. Tassani V, Cattapan F, Magnanimi L, Peschechera A. Anaplerotic effect of propionyl carnitine in rat heart mitochondria. Biochem Biophys Res Commun 1994; 199: 949–953.

    Article  PubMed  CAS  Google Scholar 

  47. Ferrari R, Pasini E, Condorelli E et al. Effect of propionyl-L-carnitine on mechanical function of isolated rabbit heart. Cardiovasc Drugs Ther 1991; 5(Suppl 1): 17–23.

    Article  PubMed  Google Scholar 

  48. Cevese A, Schena F, Cerutti G. Short-term hemodynamic effects of intravenous propionyl-L-carnitine in anesthetized dogs. Cardiovasc Drugs Ther 1991; 5(Suppl 1): 45–56.

    Article  PubMed  Google Scholar 

  49. Ferrari R, Di Lisa F, De Jong JW et al. Prolonged propionyl-L-carnitine pretreatment of rabbit: biochemical, hemodynamic and electrophysiological effects on myocardium. J Mol Cell Cardiol 1992; 24: 219–232.

    Article  PubMed  CAS  Google Scholar 

  50. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 1993; 87: 972–981.

    Article  PubMed  CAS  Google Scholar 

  51. Leipala JA, Bhatnagar R, Pineda E, Najibi S, Massoumi K, Packer L. Protection of the reperfused heart by L-propionylcarnitine. J Appl Physiol 1991; 71: 1518–1522.

    PubMed  CAS  Google Scholar 

  52. Moravec J, El Alaoui Talibi Z. Effect of propionyl-L-carnitine on the energy turnover and mechanical performance of chronically overloaded rat hearts. Cardiovasc Drugs Ther 1991; 5(Suppl 3): 102 (Abstr).

    Google Scholar 

  53. Micheletti R, Di Paola ED, Schiavone A et al. Propionyl-L-carnitine limits chronic ventricular dilation after myocardial infarction in rats. Am J Physiol 1993; 264: H1111–H1117.

    PubMed  CAS  Google Scholar 

  54. Pasini E, Cargnoni A, Condorelli E, Marzo A, Lisciani L, Ferrari R. Effect of prolonged treatment with propionyl-L-carnitine on erucic acid-induced myocardial dysfunction in rats. Mol Cell Biochem 1992; 112: 117–123.

    Article  PubMed  CAS  Google Scholar 

  55. Micheletti R, Giacalone G, Reggiani C, Canepari M, Bianchi G. Effect of propionyl-L-carnitine treatment on mechanical properties of papillary muscles from pressure-overload rat hearts. J Mol Cell Cardiol 1992; 24(Suppl 5): S41 (Abstr).

    Article  Google Scholar 

  56. El-Alaoui-Talibi Z, Bouhaddioni N, Moravec J. Assessment of the cardiostimulant action of propionyl-L-carnitine on chronically volume-overloaded rat hearts. Cardiovasc Drugs Ther 1993; 7: 357–363.

    Article  PubMed  CAS  Google Scholar 

  57. Yang XP, Samaja M, English E et al. Hemodynamic and metabolic activities of propionyl-L-carnitine in rats with pressure-overload cardiac hypertrophy. J Cardiovasc Pharmacol 1992; 20: 88–98.

    PubMed  CAS  Google Scholar 

  58. Tripp ME, Katcher ML, Peters HA et al. Systemic carnitine deficiency presenting as familial endocardial fibroelastosis. A treatable cardiomyopathy. N Engl J Med 1981; 305: 385–390.

    Article  PubMed  CAS  Google Scholar 

  59. Waber LJ, Valle D, Neill C, Di Mauro S, Shug A. Carnitine deficiency presenting as familial cardiomyopathy: a treatable defect in carnitine transport. J Pediatr 1982; 101: 700–705.

    Article  PubMed  CAS  Google Scholar 

  60. Suzuki Y, Masumuro Y, Kobayashi A, Yamazaki L, Harada Y, Osawa M. Myocardial carnitine deficiency in congestive heart failure. Lancet 1982; 1: 116 (Lett to the Ed).

    Article  PubMed  CAS  Google Scholar 

  61. Regitz V, Shug AL, Fleck E. Defective myocardial metabolism in congestive heart failure secondary to dilated cardiomyopathy and to coronary, hypertensive and valvular heart diseases. Am J Cardiol 1990; 65: 755–760.

    Article  PubMed  CAS  Google Scholar 

  62. Regitz V, Shug AL, Schuler S, Yankah AC, Hetzer R, Fleck E. Herzinsuffizienz bei dilatativer Kardiomyopathie and koronarer Herzkrankheit — Beitrag biochemischer Parameter zur Beurteilung der Prognose. Dtsch Med Wochenschr 1988; 113: 781–786.

    Article  PubMed  CAS  Google Scholar 

  63. Regitz V, Muller M, Schuler S et al. Carnitinstoffwechsel — Veranderungen im Eindstadium der dilatativen Kardiomyopathie und der ischämischen Herzmuskelerkrankung. Z Kardiol 1987; 76(Suppl 5): 1–8.

    PubMed  Google Scholar 

  64. Figuelredo Ramos ACM, Elias PRP, Barrucand L, Da Silva JAF. The protective effect of carnitine in human diphtheric myocarditis. Pediatr Res 1984; 18: 815–819.

    Article  Google Scholar 

  65. De Leonardis V, Neri B, Bacalli S, Cinelli P. Reduction of cardiac toxicity of anthracyclines by L-carnitine: preliminary overview of clinical data. Int J Clin Pharmacol Res 1985; 5: 137–142.

    PubMed  Google Scholar 

  66. Garg R, Yusuf S. Current and ongoing randomized trials in heart failure and left ventricular dysfunction. J Am Coll Cardiol 1993; 22(Suppl A): 194A–197A.

    Article  PubMed  CAS  Google Scholar 

  67. Anand IS, Chandrashekhar Y, Sarma PR, Ferrari R, Corsi M. Effect of propionyl-L-carnitine on the hemodynamics, peak VO2 and hormones in CHF. Chest 1991; 100(Suppl): 110S (Abstr).

    Google Scholar 

  68. Ferrari R, Cargnoni A, de Giuli F, Pasini E, Anand I, Visioli O. Propionyl-L-carnitine improves skeletal muscle metabolism and exercise capacity of patients with congestive heart failure. Circulation Atlanta, Georgia 1993; 88(2): 2223(Abstr).

    Google Scholar 

  69. Caponetto S, Canale C, Masperone MA, Terrachini V, Valentini G, Brunelli C. Efficacy of L-propionylcarnitine treatment in patients with left ventricular dysfunction. Eur Heart J 1994; 15: 1267–1273.

    Google Scholar 

  70. Bachetti T, Corti A, Cassani G, Confortini R, Mazzoletti A, Ferrari R. Cytokines in end stage congestive heart failure: effect of propionyl-L-carnitine. Can J Cardiol 1994; 10: 66.

    Google Scholar 

  71. Levine B, Kaiman J, Mayer L, Fillit HM, Packer M. Elevated circulating level of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1991; 323: 236–241.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrari, R., Anand, I. (1995). Utilization of propionyl-L-carnitine for the treatment of heart failure. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics