Skip to main content

Carnitine and lactate metabolism

  • Chapter
The Carnitine System

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

Abstract

The pharmacological activity of L-carnitine presents various aspects. The best known function of L-carnitine is the transport of long-chain fatty acids from cytosol across the inner mitochondrial membrane into the mitochondrial matrix, the site of jβ-oxidation [1]. Long-chain acyl-CoA cannot pass through the inner mitochondrial membrane, but their metabolic product, acylcarnitine, formed by the action of carnitine palmitoyltransferase I, an enzyme located on the outer surface of the inner mitochondrial membrane, can. Another enzyme, carnitine-acylcarnitine translocase exchanges carnitine (out) with acyl-carnitine (in) in a stoichiometric ratio of 1:1 and ensures the constancy of the intramitochondrial carnitine pool. The incoming acylcarnitine reacts with CoA. This reaction is catalyzed by the enzyme carnitine palmitoyltransferase II, which is attached to the inside of the inner membrane. Thus, acyl-CoA is reformed in the mitochondrial matrix, and carnitine is made available for exchange by the translocase [2, 3].

“In all studies L-carnitine converted lactate production at peak pacing stress into extraction, thus preventing anaerobiosis. In addition, there was an increase in the uptake of free fatty acids as well as in that of glucose, confirming the role of L-carnitine as a metabolic modulator, improving not only FFA, but also carbohydrate metabolism.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pande SV, Parvin R. Carnitine-acylcarnitine translocase catalyzes an equilibrating undirectional transport as well. J Biol Chem 1980; 255: 2994–3001.

    PubMed  CAS  Google Scholar 

  2. Bremer J. Biosynthesis of carnitine in vivo. Biochim Biophys Acta 1961; 48: 622–624.

    Article  CAS  Google Scholar 

  3. Hülsmann WC, Siliprandi D, Ciman M, Siliprandi N. Effects of carnitine on the oxidation of α-oxoglutarate to succinate in the presence of acetoacetate or pyruvate. Biochim Biophys Acta 1964; 93: 166–168.

    Article  Google Scholar 

  4. Hoppel C. The physiological role of carnitine. In: Ferrari R, Di Mauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. San Diego: Academic Press, 1992: 5–21.

    Google Scholar 

  5. Pasini E, Cargnoni A, Condorelli E, Marzo A, Lisciani R, Ferrari R. Effect of prolonged treatment with propionyl-L-carnitine on erucic acid-induced myocardial dysfunction in rats. Mol Cell Biochem 1992; 112: 117–123.

    Article  PubMed  CAS  Google Scholar 

  6. Dhalla NS, Dixon IMC, Shah KR, Ferrari R. Beneficial effects of L-carnitine and derivatives on heart membranes in experimental diabetes. In: Ferrari R, Di Mauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. San Diego: Academic Press, 1992: 411–426.

    Google Scholar 

  7. Cerretelli P, Marconi C. L-Carnitine supplementation in humans. The effects on physical performance. Int J Sports Med 1990; 11: 1–14.

    Article  PubMed  CAS  Google Scholar 

  8. Ferrari R, Ceconi C, Curello S et al. Metabolic changes during post-ischaemic reperfusion. J Mol Cell Cardiol 1988; 20(Suppl 2): 119–133.

    Article  PubMed  CAS  Google Scholar 

  9. Harris RC, Foster CVL, Hultman E. Acetylcarnitine formation during intense muscular contraction in humans. J Appl Physiol 1987; 63: 440–442.

    PubMed  CAS  Google Scholar 

  10. Alkonyi I, Kerner J, Sandor A. The possible role of carnitine and carnitine acetyl-transferase in the contracting frog skeletal muscle. FEBS Lett 1975; 52: 265–268.

    Article  PubMed  CAS  Google Scholar 

  11. Childress CC, Sacktor B, Traynor DR. Function of carnitine in the fatty acid oxidasedeficient insect flight muscle. J Biol Chem 1966; 242: 754–760.

    Google Scholar 

  12. Pearson DJ, Tubbs PK. Carnitine and derivatives in rat tissues. Biochem J 1967; 105: 953–963.

    PubMed  CAS  Google Scholar 

  13. Angelini C, Vergani L, Costa L et al. Use of carnitine in exercise physiology. Adv Clin Enzymol 1986; 4: 103–110.

    CAS  Google Scholar 

  14. Caldarone G, Giampietro M, Berlutti G, Ciampini M. Sull’impiego di L-carnitina e complesso vitaminico in un gruppo di giovani canottieri di elevata performance. Rif Med 1987; 102: 149–155.

    Google Scholar 

  15. Canale C, Terrachini V, Biagini A et al. Bicycle ergometer and echocardiographic study in healthy subjects and patients with angina pectoris after administration of L-carnitine: semiautomatic computerized analysis of M-mode tracings. Int J Clin Pharmacol Ther Toxicol 1988; 26: 221–224.

    PubMed  CAS  Google Scholar 

  16. Cooper MB, Jones DA, Edwards RHT, Corbucci GC, Montanari G, Trevisani C. The effect of marathon running on carnitine metabolism and on some aspects of muscle mitochondrial activities and antioxidant mechanisms. J Sport Sci 1986; 4: 79–87.

    Article  CAS  Google Scholar 

  17. Corbucci GG, Montanari G, Cooper MB. Effetto dell’esercizio fisico prolungato sul metabolismo della L-carnitina nell’atleta. Atleticastudi 1984; 6: 507–516.

    Google Scholar 

  18. Dal Negro R, Pomari G, Zoccatelli G, Turco P. Changes in physical performance of untrained volunteers: effects of L-carnitine. Clin Trials J 1986; 23: 242–247.

    Google Scholar 

  19. Dragan AM, Vasiliu D, Eremia NMD, Georgescu E. Studies concerning some acute biological changes after endovenous administration of 1 g L-carnitine in elite athletes. Physiologie 1987; 24: 231–234.

    PubMed  CAS  Google Scholar 

  20. Dragan IG, Vasiliu A, Georgescu E, Eremia N. Studies concerning chronic and acute effects of L-carnitine in elite athletes. Physiologie 1989; 26: 111–129.

    PubMed  CAS  Google Scholar 

  21. Dragan GI, Wagner W, Ploesteanu E. Studies concerning the ergogenic value of protein supply and L-carnitine in elite junior cyclists. Physiologie 1988; 25: 129–132.

    PubMed  CAS  Google Scholar 

  22. Eclache JP, Quard S, Carrier E. Effets d’une adjonction de carnitine au régime alimentaire sur l’exercise intense et prolongé. Comptes Rendus du Colloque de Saint-Etienne. July 2–3, 1989.

    Google Scholar 

  23. Ferretti G. Effects of a single dose L-carnitine administration on maximal aerobic power and anaerobic threshold in normoxic and hypoxic (acute and chronic) humans. Proc Congress of Physiology Exercise, Switzerland. In press.

    Google Scholar 

  24. Fuentes E, Padilla C: Efecyos de la L-carnitina sobre metabolismo lipidico del deportista de alta competicion. Repercusion sobre su capacidad aerobica. Aplicaciones practicas. Proc 14th Int Congr Sport Medicine. Madrid, June 1–4, 1987.

    Google Scholar 

  25. Greig C, Finch KM, Jones DA, Cooper M, Sargeant AJ, Forte CA. The effect of oral supplementation with L-carnitine on maximum and submaximum exercise capacity. Eur J Appl Physiol 1987; 56: 457–460.

    Article  CAS  Google Scholar 

  26. Marconi C, Sassi G, Carpinelli A, Cerretelli P. Effects of L-carnitine loading on the aerobic and anaerobic performance of endurance athletes. Eur J Appl Physiol 1985; 54: 131–135.

    Article  CAS  Google Scholar 

  27. Narvaez Perez GE, Alvarez Casado JJ, Mollerach M et al. Action of L-carnitine on the submaximal work time and lipid metabolism in trained subjects. In: Borum PR, editor. Clinical aspects of human carnitine deficiency. New York: Pergamon Press, 1986: 44–45.

    Google Scholar 

  28. Otto RM, Shores KVM, Wygand JW, Perez HR. The effect of L-carnitine supplementation on endurance exercise. Med Sci Sports Exercise 1987; 19: SS8 (Abstr).

    Google Scholar 

  29. Oyono-Enguelle S, Freund H, Ott C et al. Prolonged submaximal exercise and L-carnitine in humans. Eur J Appl Physiol 1988; 58: 53–61.

    Article  CAS  Google Scholar 

  30. Poleszynski DV, Bohmer T. Improved oxygen uptake, blood pressure and triglyceride reduction with oral L-carnitine in healthy women. Int J Biospacial Med Res 1991; 13: 180–191.

    Google Scholar 

  31. Siliprandi N, Di Lisa F, Pieralisi G et al. Metabolic changes induced by maximal exercise in human subjects following L-carnitine administration. Biochim Biophys Acta 1990; 1034: 17–21.

    Article  PubMed  CAS  Google Scholar 

  32. Soop M, Bjorkman O, Cederblad G, Hagenfeldt L, Wahren J. Influence of carnitine supplementation on muscle substrate and carnitine metabolism during exercise. J Appl Physiol 1988; 64: 2394–2399.

    PubMed  CAS  Google Scholar 

  33. Vecchiet L, Di Lisa F, Pieralisi G et al. Influence of L-carnitine administration on maximal physical exercise. Eur J Appl Physiol 1990; 61: 486–490.

    Article  CAS  Google Scholar 

  34. Wyss V, Ganzit GP, Rienzi A. Effects of L-carnitine administration on VO2max and the aerobic-anaerobic threshold in normoxia and acute hypoxia. Eur J Appl Physiol 1990; 60: 1–6.

    Article  CAS  Google Scholar 

  35. Oyono-Enguelle S, Freund H, Ott C et al. Prolonged submaximal exercise and L-carnitine in humans. Eur J Appl Physiol 1988; 58: 53–61.

    Article  CAS  Google Scholar 

  36. Suzuki M, Kanaya M, Muramatsu S, Takahashi T. Effects of carnitine administration, fasting and exercise on urinary carnitine excretion in man. J NutrSciVitaminol 1976; 22: 167–174.

    CAS  Google Scholar 

  37. Brevetti G, Perna S. Metabolie and clinical effects of L-carnitine in peripheral vascular disease. In: Ferrari R, Di Mauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. San Diego: Academic Press, 1992: 359–378.

    Google Scholar 

  38. Hiatt WR, Nawaz D, Brass EP. Carnitine metabolism during exercise in patients with peripheral vascular disease. J Appl Physiol 1987; 62: 2383–2387.

    PubMed  CAS  Google Scholar 

  39. Hiatt WR, Regensteiner JG, Hargarten ME, Wolfel EE, Brass EP. Benefit of exercise conditioning for patients with peripheral arterial disease. Circulation 1990; 81: 602–609.

    Article  PubMed  CAS  Google Scholar 

  40. Brevetti G, Chiariello M, Ferulano G et al. Increases in walking distance in patients with peripheral vascular disease treated with L-carnitine: A double-blind, cross-over study. Circulation 1988; 77: 767–773.

    Article  PubMed  CAS  Google Scholar 

  41. Brevetti G, Attisano T, Perna S, Rossini A, Policicchio A, Corsi M. Effect of L-carnitine on the reactive hyperemia in patients affected by peripheral vascular disease: A double-blind, crossover study. Angiology 1989; 40: 857–862.

    Article  PubMed  CAS  Google Scholar 

  42. Henderson LJ. The theory of neutrality regulation in the animal organism. Am J Physiol 1908; 21: 427.

    Google Scholar 

  43. McLaughlin ML, Kassirer JP. Rational treatment of acid-base disorders. Drugs 1990; 39: 841–855.

    Article  PubMed  CAS  Google Scholar 

  44. Madias NE. Lactic acidosis. Kidney Int 1986; 29: 752–774.

    Article  PubMed  CAS  Google Scholar 

  45. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science 1985; 227: 754–756.

    Article  PubMed  CAS  Google Scholar 

  46. Stacpoole PW, Harman EM, Curry SH, Baumgartner TG, Misbin RI. Treatment of lactic acidosis with dichloracetate. N Engl J Med 1983; 309: 390–396.

    Article  PubMed  CAS  Google Scholar 

  47. Broekhuysen J, Baudine A, Deltour G. Effect of carnitine on acidosis and ketosis induced by lipid perfusions in dogs during starvation. Biochim Biophys Acta 1965; 106: 207–210.

    Article  PubMed  CAS  Google Scholar 

  48. Corbucci GG, Gasparetto A, Antonelli M et al. Effects of L-carnitine administration on mitochondrial electron transport activity present in human muscle during circulatory shock. Int J Clin Pharm Res 1985; 5: 237–241.

    CAS  Google Scholar 

  49. Kette F, Weil MH, Von Planta M, Gazmuri RJ, Rackow EC. Buffer agents do not reverse intramyocardial acidosis during cardiac resuscitation. Circulation 1990; 81: 1660–1666.

    Article  PubMed  CAS  Google Scholar 

  50. Neely JR, Rovetto MJ, Oram JF. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis 1972; 15: 289–329.

    Article  PubMed  CAS  Google Scholar 

  51. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol 1974; 36: 413–469.

    Article  PubMed  CAS  Google Scholar 

  52. Randle PJ, Tubbs PK. Carbohydrate and fatty acid metabolism. In: Steiner DF, Freinkel N, editors. Handbook of physiology. The cardiovascular system I. Washington, D.C.: American Physiological Society, 1979: 805–844.

    Google Scholar 

  53. Taegtmeyer H. Myocardial metabolism. In: Phelps M, Mazziotta J, Shelbert H, editors. Positron emission tomography and autoradiography: Principles and applications for the brain and heart. New York: Raven Press, 1986: 149–195.

    Google Scholar 

  54. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 1979; 44: 166–175.

    Article  PubMed  CAS  Google Scholar 

  55. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Progr Cardiovasc Dis 1981; 23: 321–336.

    Article  CAS  Google Scholar 

  56. Drake AJ, Haines JR, Noble MIM. Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 1980; 14: 65–72.

    Article  PubMed  CAS  Google Scholar 

  57. Gertz EW, Wisneski JA, Stanley WC, Neese RA. Myocardial substrate utilization during exercise in humans: Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest 1988; 82: 2017–2025.

    Article  PubMed  CAS  Google Scholar 

  58. Olson MS, Dennis SC, Routh CA, DeBuysere MS. The regulation of pyruvate dehydrogenase by fatty acids in isolated rabbit heart mitochondria. Arch Biochem Biophys 1978; 187: 121–131.

    Article  PubMed  CAS  Google Scholar 

  59. Dennis SC, Padasa A, DeBuysere MS, Olson MS. Studies on the regulation of pyruvate dehydrogenase in the isolated perfused rat heart. J Biol Chem 1979; 254: 1252–1258.

    PubMed  CAS  Google Scholar 

  60. Ferrari R, Cargnoni A, Gargano M et al. Molecular events during myocardial ischaemia and reperfusion. Adv Myochem 1987; 1: 354–356.

    Google Scholar 

  61. Visioli O, Bongrani S, Cucchini F, Di Donato M, Ferrari R. Myocardial lactic acid balance after left ventriculography. Eur J Cardiol 1980; 11: 357–365.

    PubMed  CAS  Google Scholar 

  62. Ferrari R, Bolognesi R, Raddino R. Reproducibility of metabolical parameters during successive coronary sinus pacing in patients known to have coronary artery disease. Int J Cardiol 1985; 9: 231–234.

    Article  PubMed  CAS  Google Scholar 

  63. Ferrari R, Cucchini F, Di Lisa F, Raddino R, Bolognesi R, Visioli O. The effects of L-carnitine on myocardial metabolism of patients with coronary artery disease. Clin Trials J 1984; 21: 41–58.

    Google Scholar 

  64. Ferrari R, Cucchini F, Visioli O. The metabolical effects of L-carnitine in angina pectoris. Int J Cardiol 1984; 5: 213–216.

    Article  PubMed  CAS  Google Scholar 

  65. Ferrari R. Carnitine and cardiac energy supply. In: De Jong JW, editor. Myocardial energy metabolism. Dordrecht-Boston-Lancaster: Martinus Nijhoff Publishers, 1988: 35–43.

    Chapter  Google Scholar 

  66. Cederblad G, Lundholm K, Scherstén T. Carnitine concentration in skeletal muscle tissue from patients with diabetes mellitus. Acta Med Scand 1977; 202: 305–306.

    Article  PubMed  CAS  Google Scholar 

  67. Litwin SE, Raya TE, Gay RG et al. Chronic inhibition of fatty acid oxidation: new model of diastolic dysfunction. Am J Physiol 1990; 258: H51–H56.

    PubMed  CAS  Google Scholar 

  68. Thomsen JH, Shug AL, Yap VU, Patel AK, Karras TJ, De Felice SL. Improved pacing tolerance of the ischemic human myocardium after administration of carnitine. Am J Cardiol 1979; 43: 300–306.

    Article  PubMed  CAS  Google Scholar 

  69. Reforzo G, De Andreis-Bessone PL, Rebaudo F, Tibaldi M. Effects of high doses of L-carnitine on myocardial lactate balance during pacing-induced ischemia in aging subjects. Curr Ther Res 1986; 40: 1–11.

    Google Scholar 

  70. Lopaschuk GD. Effects of carnitine and carnitine acyltransferase inhibition on energy substrate utilization in the intact heart. In: Ferrari R, Di Mauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. San Diego: Academic Press, 1992: 403–410.

    Google Scholar 

  71. Folts JD, Shug AL, Koke JR, Bittar N. Protection of the ischemic dog myocardium with Carnitine. Am J Cardiol 1978; 41: 1209–1214.

    Article  PubMed  CAS  Google Scholar 

  72. Shug AL, Thomsen JH, Folts JD, Bittar N, Klein MI, Koke JR, Huth PJ. Changes in tissue levels of carnitine and other metabolites during myocardial ischemia and anoxia. Arch Biochem Biophys 1978; 187: 25–33.

    Article  PubMed  CAS  Google Scholar 

  73. Suzuki Y, Masumura Y, Kobayashi A, Yamazaki N, Harada Y, Osawa M. Myocardial carnitine deficiency in chronic heart failure. Lancet 1982; i: 116 (Lett to the Ed).

    Article  Google Scholar 

  74. Ferrari R, Di Lisa F, Raddino R et al. Factors influencing the metabolic and functional alterations induced by ischaemia and reperfusion. In: Ferrari R, Katz A, Shug A, Visioli O, editors. Myocardial ischaemia and lipid metabolism. New York: Plenum Press, 1984: 135–157.

    Chapter  Google Scholar 

  75. Liedtke AJ. Lipid burden in ischemic myocardium. J Mol Cell Cardiol 1988; 20(Suppl 2): 65–74.

    Article  PubMed  CAS  Google Scholar 

  76. Bohles H, Noppency T, Akcetin Z et al. The effect of preoperative L-carnitine supplementation on myocardial metabolism during aorto-coronary-bypass surgery. Curr Ther Res 1986; 39: 429–435.

    Google Scholar 

  77. Ferrari R, Visioli O. Effects of L-carnitine in coronary artery disease patients. In: Ferrari R, Di Mauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From function to therapy. San Diego: Academic Press, 1992: 265–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ferrari, R., Visioli, O. (1995). Carnitine and lactate metabolism. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics