Skip to main content

Carnitine transport in volume-overloaded rat hearts

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 162))

Abstract

Carnitine concentration in tissue is generally related to mitochondrial volume-density and ability to oxidize fatty acids. The highest tissue carnitine has been detected in ventricular myocardium which, compared to other tissues, presents elevated rates of oxidative phosphorylation [1]. The ability of cardiac mitochondria to oxidize long chain fatty acids is also much higher when compared to skeletal muscle or liver sarcosomes (Table 1). Paradoxically enough, it has been known for many years [3–5] that the heart is missing γ-butyrobetaine hydroxylase [6, 7], the last enzyme of carnitine synthesizing pathway, and that in the myocardium of different species including man, the carnitine synthesis stops at the level of deoxycarnitine (γ-butyrobetaine). The tissue presenting the highest carnitine concentrations must therefore take up this essential co-factor of lipid metabolism from the blood where it is supplied by liver and, in some species, by kidney [6, 8].

“An alteration of active carnitine transport did occur during the development of cardiac hypertrophy: both total and carrier-mediated carnitine transport were significantly depressed. The alterations of carrier-mediated transport might be related to a decreased affinity of membrane carrier for L-carnitine (higher apparent KM for carnitine) rather than to a decreased number of carriers (Vmax unchanged).”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siliprandi N, Di Lisa F, Pivetta A, Miotto G, Siliprandi D. Transport and function of L-carnitine and L-propionylcarnitine: relevance to some cardiomyopathies and cardiac ischemia. Z Kardiol 1987; 76(Suppl 5): 34–40.

    PubMed  CAS  Google Scholar 

  2. Bode Ch, Klingenberg M. Die Veratmung von Fettsäuren in isolierten Mitochondrien. Biochem Z 1965; 341: 271–299.

    PubMed  CAS  Google Scholar 

  3. Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism and functions. New York: Academic Press, 1980.

    Google Scholar 

  4. Cox RA, Hoppel CL. Carnitine and trimethylaminobutyrate synthesis in the rat tissues. Biochem J 1974; 142: 699–701.

    PubMed  CAS  Google Scholar 

  5. Sachan DS, Hoppel CL. Carnitine biosynthesis. Hydroxylation of N6-trimethyl-lysine to 3-hydroxy-N6-trimethyl-lysine. Biochem J 1980; 188: 529–534.

    PubMed  CAS  Google Scholar 

  6. Rebouche CJ. Comparative aspects of carnitine biosynthesis. In: Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism and function. New York: Academic Press, 1980: 50–110.

    Google Scholar 

  7. Engel AG. Possible causes and effects of carnitine deficiency in man. In: Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism and function. New York: Academic Press, 1980: 271–284.

    Google Scholar 

  8. Bohmer T, Molstad P. Carnitine transport across the plasma membrane. Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism and function. New York: Academic Press, 1980: 73–88.

    Google Scholar 

  9. Vary TC, Neely JR. Characterization of carnitine transport in isolated perfused adult rat hearts. Am J Physiol 1982; 242: H585–H592.

    PubMed  CAS  Google Scholar 

  10. Bohmer T, Eiklid K, Jonsen J. Carnitine transport into human heart cells in culture. Biochim Biophys Acta 1977; 465: 627–633.

    Article  PubMed  CAS  Google Scholar 

  11. Molstad P, Bohmer T, Eiklid K. Specificity and characteristics of the carnitine transport in human heart cells (CCL 27) in culture. Biochim Biophys Acta 1977; 471: 296–304.

    Article  PubMed  CAS  Google Scholar 

  12. Bahl JJ, Navin TR, Bressler R. Carnitine uptake and stimulation of carnitine uptake in isolated beating adult rat heart myocytes. In: Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism and function. New York: Academic Press, 1980: 91–112.

    Google Scholar 

  13. Rebouche CJ. Carnitine movement across muscle cell membranes. Studies in isolated rat muscle. Biochim Biophys Acta 1977; 471: 145–155.

    Article  PubMed  CAS  Google Scholar 

  14. Sartorelli L, Ciman M, Siliprandi N. Carnitine transport in rat heart slices: I. The action of thiol reagents on the acetylcarnitine/carnitine exchange. Ital J Biochem 1985; 34: 275–281.

    PubMed  CAS  Google Scholar 

  15. Martinuzzi A, Vergani L, Rosa M, Angelini C. L-carnitine uptake in differentiating human cultured muscle. Biochim Biophys Acta 1991; 1095: 217–222.

    Article  PubMed  CAS  Google Scholar 

  16. Bahl J, Navin T, Manian AA, Bressler R. Carnitine transport in isolated adult rat heart cardiomyocytes and the effect of 7,8-diOH chlorpromazine. Circ Res 1981; 48: 378–385.

    Article  PubMed  CAS  Google Scholar 

  17. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL. Protection of the ischaemic myocardium by L-propionylcarnitine: effects on the recovery of cardiac output after ischae-mia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc Res 1986; 20: 536–541.

    Article  PubMed  CAS  Google Scholar 

  18. El Alaoui-Talibi Z, Moravec J. Carnitine transport and exogenous palmitate oxidation in chronically volume-overloaded rat hearts. Biochim Biophys Acta 1989; 1003: 109–114.

    Article  PubMed  Google Scholar 

  19. Cantrell CR, Borum PR. Identification of a cardiac carnitine binding protein. J Biol Chem 1982; 257: 10599–10604.

    PubMed  CAS  Google Scholar 

  20. York CM, Cantrell CB, Borum PR. Cardiac carnitine deficiency and altered carnitine transport in cardiomyopathic hamsters. Arch Biochem Biophys 1983; 221: 526–533.

    Article  PubMed  CAS  Google Scholar 

  21. Molstad P, Bohmer T. The effect of diphteria toxin on the cellular uptake and efflux of L-carnitine. Evidence for a protective effect of prednisolone. Biochim Biophys Acta 1981; 641: 71–78.

    Article  PubMed  CAS  Google Scholar 

  22. Sartorelli L, Ciman M, Mantovani G, Siliprandi N. Carnitine transport in rat heart slices: II. The carnitine/deoxycarnitine antiport. Biochim Biophys Acta 1985; 34: 282–287.

    CAS  Google Scholar 

  23. Vary TC, Neely JR. A mechanism for reduced myocardial carnitine levels in diabetic animals. Am J Physiol 1982; 243: H154–H158.

    PubMed  CAS  Google Scholar 

  24. Huth PJ, Shug AL. Properties of carnitine transport in rat kidney cortex slices. Biochim Biophys Acta 1980; 602: 621–634.

    Article  PubMed  CAS  Google Scholar 

  25. Huth PJ, Schmidt MJ, Hall PV, Fariello RG, Shug AL. The uptake of carnitine by slices of rat cerebral cortex. J Neurochem 1981; 36: 715–723.

    Article  PubMed  CAS  Google Scholar 

  26. Shultz SG, Curran PF. Coupled transport of sodium and organic solutes. Physiol Rev 1970; 50: 636–718.

    Google Scholar 

  27. Vary TC, Neely JR. Sodium dependence of carnitine transport in isolated perfused adult rat hearts. Am J Physiol 1983; 244: H247–H252.

    PubMed  CAS  Google Scholar 

  28. Wittels B, Spann Jr JFJ. Defective lipid metabolism in the failing heart. J Clin Invest 1968; 47: 1787–1793.

    Article  PubMed  CAS  Google Scholar 

  29. Whitmer JT. Energy metabolism and mechanical function in perfused hearts of Syrian hamsters with dilated or hypertrophic cardiomyopathy. J Mol Cell Cardiol 1986; 18: 307–317.

    Article  PubMed  CAS  Google Scholar 

  30. Vary TC, Reibel DK, Neely JR. Control of energy metabolism of heart muscle. Annu Rev Physiol 1981; 43: 419–430.

    Article  PubMed  CAS  Google Scholar 

  31. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 1993; 87: 972–981.

    Article  PubMed  CAS  Google Scholar 

  32. Witteis B, Bressler P. Lipid metabolism in the newborn hearts. J Clin Invest 1965; 44: 1639–1646.

    Article  Google Scholar 

  33. Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V, Sanadi DR. Fatty acid oxidation by isolated perfused working hearts of aged rats. Am J Physiol 1977; 232: E258–E262.

    PubMed  CAS  Google Scholar 

  34. Borum PR. Carnitine. Ann Rev Nutr 1983; 3: 233–259.

    Article  CAS  Google Scholar 

  35. Rebouche CJ, Engel AG. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport. J Clin Invest 1984; 73: 857–867.

    Article  PubMed  CAS  Google Scholar 

  36. Van Dyke DH, Griggs RC, Markesbery W, Dimauro S. Hereditary carnitine deficiency of muscle. Neurology 1975; 25: 154–159.

    Article  Google Scholar 

  37. Whitmer JT. L-carnitine treatment improves cardiac performance and restores high-energy phosphate pools in cardiomyopathic Syrian hamster. Circ Res 1987; 61: 396–408.

    Article  PubMed  CAS  Google Scholar 

  38. Revis NW, Cameron AJV. Metabolism of lipids in experimental hypertrophie hearts of rabbits. Metabolism 1979; 28: 601–613.

    Article  PubMed  CAS  Google Scholar 

  39. Reibel DK, Uboh CE, Kent RL. Altered coenzyme A and carnitine metabolism in pressure-overload hypertrophied rat hearts. Am J Physiol 1983; 244: H839–H843.

    PubMed  CAS  Google Scholar 

  40. Bowé C, Nzonzi J, Corsin A, Moravec J, Feuvray D. Lipid intermediates in chronically volume-overloaded rat hearts. Effect of diffuse ischemia. Pflügers Arch 1984; 402: 317–320.

    Article  PubMed  Google Scholar 

  41. El Alaoui-Talibi Z, Moravec J. Decreased L-carnitine transport in mechanically overloaded rat hearts. In: Jacob R, Just H, Holubarsch, editors. Cardiac energetics. New York: Springer Verlag, 1987: 223–232.

    Google Scholar 

  42. Reibel DK, O’Rourke B, Foster KA. Mechanisms for altered carnitine content in hypertrophied rat hearts. Am J Physiol 1987; 252: H561–H565.

    PubMed  CAS  Google Scholar 

  43. El Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J. Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol 1992; 262: H1068–H1074.

    Google Scholar 

  44. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res 1985; 26: 1015–1035.

    PubMed  CAS  Google Scholar 

  45. Reibel DK, O’Rourke B, Foster KA, Hutchinson H, Uboh CE, Kent RL. Altered phospholipid metabolism in pressure-overload hypertrophied hearts. Am J Physiol 1986; 250: H1–H6.

    PubMed  CAS  Google Scholar 

  46. El Alaoui-Talibi Z, Bouhaddioni N, Moravec J. Assessment of the cardiostimulant action of propionyl-L-carnitine on chronically volume-overloaded rat hearts. Cardiovasc Drugs Ther 1993; 7: 357–363.

    Article  PubMed  Google Scholar 

  47. Torielli L, Conti F, Cinato E, Ceppi E, Anversa P, Bianchi G, Ferrari P. Alterations in energy metabolism of hypertrophied rat cardiomyocytes: influence of propionyl-L-carnitine. Am J Physiol. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moravec, J., El Alaoui-Tablibi, Z., Brunold, C. (1995). Carnitine transport in volume-overloaded rat hearts. In: De Jong, J.W., Ferrari, R. (eds) The Carnitine System. Developments in Cardiovascular Medicine, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0275-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0275-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4122-5

  • Online ISBN: 978-94-011-0275-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics