Skip to main content

Modeling Excess Sulfur Deposition on Wetland Soils Using Stable Sulfur Isotopes

  • Chapter
  • 95 Accesses

Abstract

Freshwater wetlands exposed to excess S deposition can potentially store significant amounts of reduced S in soils by dissimilatory sulfate reduction. If this storage is permanent, the harmful environmental effects of S deposition and the accompanying acidity are reduced, particularly on surface waters into which wetlands drain. Total non-sulfate S in freshwater peat is divided into three fractions: reduced inorganic S, ester sulfate and carbon-bonded sulfur (CBS). Each fraction is further divided based on its origin: assimilatory via plant and microbial uptake, and dissimilatory via microbial reduction. The CBS fraction dominates in peat, so the amount of dissimilatory CBS in the soil is a direct measure of the beneficial effect of storage of reduced S. Unfortunately, there is no way to directly measure dissimilatory CBS. A model is developed which, with three assumptions, provides a method to calculate dissimilatory CBS using S pool size and stable isotope measurements. Application of the model to a wetland in the New Jersey Pinelands, U.S.A., shows that large amounts of reduced dissimilatory S are stored in the soil. As a consequence, the impact of S deposition and acidity on the surface water environment is significantly reduced.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • American Public Health Association (APHA).: 1985, Standard Methods for the Examination of Water and Wastewater, 16th edition, American Public Health Association, Washington, D. C.

    Google Scholar 

  • Brown, K. A.: 1986, ‘Formation of Organic Sulphur in Anacrobic Peat,’ Soil Biol. Biochem. 18 131–140.

    Article  Google Scholar 

  • Bushman, L. M., Dick, R. P. and Tabatabai M. A.: 1983, ‘Determination of Total Sulfur and Chlorine in Plant Materials by Ion Chromotography,’ Soil Sci. Soc. Am. J. 47 1167–1170.

    Article  Google Scholar 

  • Casagrande, D. J., Gronli K. and Sutton N.: 1980, ‘The Distribution of Sulphur and Organic Matter in Various Fractions of Peat: Organs of Sulfur in Coal,’ Geochim. Cosmochim. Acta 44 25–32.

    Article  Google Scholar 

  • Chambers, L. A. and Trudinger P. A.: 1979, ‘Microbiological Fractionation of Stable Sulfur Isotopes— A Review and Critique.’ Geomicrobiol. J. 1 249–293.

    Article  Google Scholar 

  • Forman, R. T. T. (ed.): 1979, Pine Barrens: Ecosystem and Landscape, Academic Press, New York.

    Google Scholar 

  • Fry, B.: 1986, ‘Sources of Carbon and Sulfur Nutrition for Consumers in Three Meromictic Lates of New York state, U.S.A,’ Limnol. Oceanogr. 31 79–88.

    Article  Google Scholar 

  • Fry, B.,Scanlan, R. S.,Winters, J. K., and Parker, P. L.: 1982, ‘Sulfur uptake by salt grasses, mangroves, and seagrasses in anacrobic sediments,’ Geochim. Cosmochim. Acta 46 1121–1124.

    Article  Google Scholar 

  • Fuller, R. D., Mitchell, M. J. Krouse, H. R. Wyskowski, B. J., and Driscoll, C. T: 1986, ‘Stable Sulfur Isotope Ratios as a Tool for Interpreting Ecosystem Sulfur Dynamics,’ Water Air and Soil Pollut. 28 163–171.

    Google Scholar 

  • Gorham, E., Bayley, S. E. and Schindler D. W.: 1984, ‘Ecological effects of Acid Deposition Upon Peathands: A Neglected Field in “Acid Rain” Research,’ Can. J. Fish. Aquat. Sci. 41 1256–1268.

    Article  Google Scholar 

  • Irving, P. M. (ed.): 1990, Acidic deposition: State of Science and Technology,Vol. II. Aquatic Processes and Effects, U.S. National Acid Precipitation Assessment Program, Washington, D. C.

    Google Scholar 

  • Kaplan, I. R. and Rittenberg, S. C.: 1964, ‘Microniological Fractionation of Sulfur Isotopes,’ J. Gen. Microbiol. 34 195–212.

    Article  Google Scholar 

  • Krouse, H. R. and Tabatabai, M. A.: 1986, ‘Stable Sulfur Isotopes,’ in M. A. Tabatabai (ed.), Sulfur in Agriculture, Agronomy Monogr. No. 27, Soil Sci. Soc. Am., Madison, WI, pp. 169–205.

    Google Scholar 

  • Lord, D. G., Johnsson, P., Barringer, J. and Schuster, P.: 1987, Bull. N. J. Acad. Sci. 32 45.

    Google Scholar 

  • Lynch, L. A.: 1993. Lactate-utilizing Sulfate-reducing Bacteria in McDonalds Branch Cedar Swamp, Lebanon State Forest, New Jersey, MS thesis, Rutgers University, Camden, NJ.

    Google Scholar 

  • Morgan, M. D.: 1990, ‘Streams in the New jersey Pinelands Directly reflect Changes in Atmospheric Deposition Chemistry,’ J. Environ. Qual. 19 296–302.

    Article  Google Scholar 

  • Morgan, M. D., Lynch, L. Diegmann, M. and Spratt, H. Jr.: 1994, Verh. Internat. Verein. Limnol. 25 1311–1314.

    Google Scholar 

  • Morgan, M. D. and Good, R. E.: 1988, ‘Stream Chemistry in the New Jersey Pinelands: The Influence of Precipitation and Watershed Disturbance,’ Water Resourc. Res. 24 1091–1100.

    Article  Google Scholar 

  • Rhodehamel, E. C.: 1979, ‘Hydrology of the New Jersey Pine Barrens,’ in R. T. T. Forman (ed.), Pine Barrens: Ecosystem and Landscape, Academic Press, New York, pp. 147–168.

    Google Scholar 

  • Rudd, J. M. W., Kelly C. A. and Furutani, A.: 1986, ‘The Role of Sulfate Reduction in Long Term Accumulation of Organic and Inorganic Sulfur in Lake Sediments,’ Limnol. Oceanogr 31 1281–1291.

    Article  Google Scholar 

  • Spratt, H. G., Jr. and Morgan, M. D.: 1990, ‘Sulfur Cycling in a Cedar Dominated Freshwater Wetland,’ Limnol. Oceanogr 35 1586–1593.

    Article  Google Scholar 

  • Wieder, R. K. and Lang, G. E.: 1988, ‘Cycling of Inorganic Sulfur in Peat from Big Run Bog, West Virginia,’ Biogeochem. 5 221–242.

    Article  Google Scholar 

  • Wieder, R. K., Lang, G. E. and Granus, V. A.: 1985, ‘An Evaluation of Wet Chemical Methods for Quantifying Sulfur Fractions in Freshwater We Hand Peat,’ Limnol. Oceanogr. 30 1109–1115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morgan, M.D. (1995). Modeling Excess Sulfur Deposition on Wetland Soils Using Stable Sulfur Isotopes. In: Černý, J., Novák, M., Pačes, T., Wieder, R.K. (eds) Biogeochemical Monitoring in Small Catchments. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0261-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0261-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4115-7

  • Online ISBN: 978-94-011-0261-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics