Skip to main content

Cells and bubbles in sparged bioreactors

  • Chapter

Part of the book series: Current Applications of Cell Culture Engineering ((CACC,volume 1))

Abstract

Ever since animal cells have been grown in-vitro, various techniques have been used to supply the cells with oxygen. The most simple and commonly used ‘large-scale’ technique to provide oxygen is through the introduction of gas bubbles. However, almost since the beginning of in-vitro cell culture, empirical observations have indicated that bubbles can be detrimental to the cells. This review will discuss the background of the problem, review the relevant research on the topic, attempt to provide a coherent summary of what we know from all of this research, and finally outline what still needs to be investigated. Specific topics to be covered include: experimental correlations of cell damage with bubbles, cell attachment to bubbles, the hydrodynamics of bubble rupture, bioreactor studies, visualization studies, and computer simulations and qualification of cell death as a result of bubble rupture.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Augenstein DC, Sinskey AJ, Wang DIC (1971) Effect of shear on the death of two strains of mammalian tissue cells. Biotechnol. Bioeng. 13: 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Aunins JG, Croughan MS, Wang DIC (1986) Engineering developments in homogeneous culture of animal cells: Oxygenation of reactors and scaleup. Biotechnol. Bioeng. 17: 399–723.

    Google Scholar 

  • Backer MP, Metzger LS, Slaber PL, Nevitt KL, Boder GB (1988) Large-scale production of nonoclonal antibodies in suspension culture. Biotechnol. Bioeng. 32: 993–1000.

    Article  CAS  PubMed  Google Scholar 

  • Bavarian F, Fan LS, Chalmers JJ (1991) Microscopic visualization of insect cell-bubble interactions. I: Rising bubbles, air-medium interface, and the foam layer. Biotechnol. Prog. 7: 140–150.

    Article  CAS  PubMed  Google Scholar 

  • Boulton-Stone JM, Blake JR (1993) Gas-bubbles bursting at a free surface. J. Fluid Mech. 154: 437–466.

    Article  Google Scholar 

  • Cherry RS, Papoutsakis ET (1986) Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc. Eng. 1: 29–41.

    Article  Google Scholar 

  • Chalmers JJ, Bavarian F (2991) Microscopic visualization of insect cell-bubble interactions. II: The bubble film and bubble rupture. Biotechnol. Prog. 7: 151–158.

    Article  Google Scholar 

  • Croughan MS, Hamel JF, Wang DIC (1987) Hydrodynamic effects in animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29: 130–141.

    Article  CAS  PubMed  Google Scholar 

  • Dodge TC, Hu WS (1986) Growth of hybridoma cells under different agiatation conditions. Biotechnol. Letters 8: 683–686.

    Article  Google Scholar 

  • Garcia-Briones MA, Brodkey RS, Chalmers JJ (1994) Computer simulations of the rupture of a gas bubble at a gas-liquid interface and its implications in animal cell damage. Chem. Eng. Sci. 49: 2301–2320.

    Article  CAS  Google Scholar 

  • Garcia-Briones MA, Chalmers JJ (1992) Cell-bubble interactions: Mechanims of suspended cell damage. Ann. N.Y, Acad. Sci. 665: 219–229.

    Article  CAS  Google Scholar 

  • Goldblum S, Bae Y, Hink WF, Chalmers JJ (1990) Protective effect of methylcellulose and other polymers on insect cells subjected to laminar shear stress. Biotechnol. Prog. 6: 383–390.

    Article  CAS  PubMed  Google Scholar 

  • Handa-Corrigan A, Emary AN, Spier RE (1989) Effect of gas-liquid interfaces on the growth of suspended mammalian cells: mechanisms of cell damage by bubbles. Enzyme Microb. Technol. 11: 230–235.

    Article  CAS  Google Scholar 

  • Handa A, Emary AN, Spier RE (1987) On the evaluation of gasliquid interfacial effects on hydridoma viability in bubble column bioreactors. Dev. Biol. Stand. 66: 241–253.

    CAS  PubMed  Google Scholar 

  • Hu WS, Meier J, Wang DIC (1985) A mechanistic analysis of the inoculum requirement for the cultivation of mammalian cells on microcarriers. Biotechnol. Bioeng. 27: 585–595.

    Article  CAS  PubMed  Google Scholar 

  • Jobses I, Martens D, Tramper J (1991) Lethal events during gas sparging in animal cell culture. Biotech. Bioeng. 37: 484–490.

    Article  CAS  Google Scholar 

  • Kilburn DG, Webb FC (1968) The cultivation of animal cells at controlled dissolved oxygen partial pressure. Biotechnol. Bioeng. 10: 801–814.

    Article  CAS  Google Scholar 

  • Kunas KT, Papoutsakis ET (1990a) Damage mechanisms of suspended animal cells in agitated bioreactors with and without bubble entrainment. Biotechnol. Bioeng. 36: 476–483.

    Article  CAS  PubMed  Google Scholar 

  • Kunas KT, Papoutsakis ET (1990b) The protective effect of serum against hydrodynamic damage of hydridoma cells in agitated and surface-areated bioreactors. J. Biotechnol. 15: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Lee GM, Huard TK, Kaminski MS, Palsson BO (1988) Effect of mechanical agitation on hydridoma cell growth. Biotechnol. Letters 10: 625–628.

    Article  Google Scholar 

  • Maclntyre F (1972) Flow patterns in breaking bubbles. J Geophys. Res. 77: 5211–5228.

    Article  Google Scholar 

  • Maclntyre F (1968) Bubbles: a boundary-layer ‘microtome’ for micron-thick samples of a liquid surface. J. Phys. Chem. 72: 589–592.

    Article  Google Scholar 

  • Martens DE, de Gooijer CD, Beuvery EC, Tramper J (1992) Effect of serum concentration on hybridoma viable cell density and production of monoclonal antibodies in CSTRs and on shear sensitivity in air-lift loop reactors. Biotechnol. Bioeng. 39: 891–897.

    Article  CAS  PubMed  Google Scholar 

  • Murhammer DW, Goochee CF (1990) Sparged animal cell bioreactors: mechanism of cell damage and Pluronic F-68 protection. Biotechnol. Prog. 6: 391–397.

    Article  CAS  PubMed  Google Scholar 

  • Oh SKW, Nienow AW, Al-Rubeai M, Emary AN (1989) The effect of agiatation intensity with and without continuous sparging on the growth and antibody production of hybridoma cells. J. Biotechnol. 12: 45–62.

    Article  CAS  Google Scholar 

  • Orton D, Wang DIC (1991) Fluorescent Visualization of Cell Death in Bubble Areated Bioreactors. Cell Culture Engineering III, Engineering Foundation, Feb. 2–7.

    Google Scholar 

  • Ruyan WS, Gyer RP (1963) Growth of L cell suspensions on a Warburg apparatus. Proc. Soc. Bio. Med. 103: 252–254.

    Google Scholar 

  • Schurch U, Kramer H, Einsle A, Widmer F, Eppenberger HM (1988) Experimental evaluation of laminar shear stress on the behaviour of hybridoma mass cell cultures producing monoclonal antibodies against mitochondrial creatine kinase. J. Biotechnol. 7: 179–184.

    Article  Google Scholar 

  • Sinskey AJ, Fleischaker RJ, Tyo MA, Giard DJ, Wang DIC (1981) Production of cell derived products: virus and interferon. Ann. N.Y. Acad. Sci. 369: 47–59.

    Article  CAS  PubMed  Google Scholar 

  • Smith CG, Greenfield PF, Randerson DH (1987) A technique for determining the shear sensitivity of mammalian cells in suspension culture. Biotechnol. Tech. 1: 39–44.

    Article  Google Scholar 

  • Swim HE, Parker RF (1960) Effect of Pluronic F-68 on growth of fibroblasts in suspension on rotary shakers. Proc. Soc. Biol. Med. 103: 252–254.

    Article  CAS  Google Scholar 

  • Tramper J, Smit JD, Straatman J, Valk JM (1988) Bubble-column design for growth of fragile insect cells. Bioprocess Engin. 3: 37–41.

    Article  CAS  Google Scholar 

  • Tramper J, Williams JB, Joustra D (1986) Shear sensitivity of insect cells in suspension. Enzyme Microb. Technol. 8: 33–36.

    Article  Google Scholar 

  • Trinh K, Garcia-Briones MA, Hink FH, Chalmers JJ (1994) Quantification of damage to suspended insect cells as a result of bubble rupture. Biotechnol. Bioeng. 43: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Wang NS, Yang JD, Calabrese RV, Chang KC (1994) Unified modeling framework of cell death due to bubbles in agitated and sparged bioreactors. J. Biotechnol. 33: 107–122.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chalmers, J.J. (1994). Cells and bubbles in sparged bioreactors. In: Buckland, B.C., Aunins, J.G., Bibila, T.A., Hu, WS., Robinson, D.K., Zhou, W. (eds) Cell Culture Engineering IV. Current Applications of Cell Culture Engineering, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0257-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0257-5_34

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4114-0

  • Online ISBN: 978-94-011-0257-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics