Skip to main content

The Coordination Chemistry of Iron in Biological Transport and Storage; Iron Removal in Vivo

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 459))

Abstract

Serum transferrin is the iron transport agent of mammals. Its function and structure are increasingly well understood, particularly because of the relatively recent protein crystal structure information. Transferrin not only acts as a transport agent but also functions as an iron buffer, maintaining free ferric ion concentrations in the body at a very low but constant value. This role of transferrin, and our understanding of the mechanisms of iron binding and release by the protein, are important in four areas of medical science. First, iron storage and transport are critical to understanding the molecular basis of anemias. [Iron uptake by the gut involves the eventual complexation by transferrin.] Second, iron overload occurs in several disorders, the most common due to long-term transfusion therapy of íβ-thalassemia (Cooley’s anemia). [Iron is only regulated by uptake; there is no mechanism for spontaneous removal of iron.] Chelation therapy of iron overload has long used desferrioxamine B (Desferal®). There is a continuing search for new sequestering agents that would have improved properties, particularly oral activity. One issue thus raised is the thermodynamic and kinetic ability of such sequestering agents to remove iron from transferrin. Third, the release of iron, the reductive generation of Fe2+ and subsequent free radical generation from reaction with O2 (Fenton chemistry) are now thought to be the major cause of tissue damage following myocardial infarction. The use of iron chelating agents may provide a way to block such damage by keeping free ferric ion at low levels - a function of transferrin in circulating serum that is disrupted by the heart attack. Finally, the fourth area of medical relevance for transferrin iron binding and release is related to bacterial infection. The role of iron in the pathogenicity of bacterial infections is now well established. Iron availability to the invading bacterium is known to be directly connected to the virulence of infections that cause infantile enteritis, leprosy, cholera, and tuberculosis, as major examples. Several siderophores of pathogenic microorganisms are capable of removing iron from serum transferrin. Hence the mechanism(s) by which iron is released from transferrin to such ligands is of medical, as well as general biochemical, significance.

Transferrin is a bilobal protein of molecular weight 78,000 that is apparently the result of the fusion of two units of an ancestral protein. Each of the two lobes contain one metal binding site that has a very high affinity for high-spin Fe3+. Single crystal structures of rabbit diferric and human monoferric transferrins and lactoferrin establish that the iron binding sites of these closely related proteins are essentially identical, composed of a bidentate carbonate, 2 phenolate groups (tyrosine), 1 nitrogen (histidine) and a carboxylate oxygen (aspartate). The stable form of metal-free, apotransferrin has an “open” conformation in which the iron binding site is in an open cleft near the protein surface and is accessible to the surrounding solution. In contrast, the stable form of the iron complex has the cleft closed so that the metal binding site is buried under the surface of the protein, thus making the metal inaccessible to competing ligands. The kinetic behavior of iron removal by several different types of ligands is examined with the view of new ligand design for ligands of use in human iron decorporation therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin, J. H.; Gordon, R. M., Deep Sea Research 1988, 35 , 177.

    Article  CAS  Google Scholar 

  2. Fox, L. L. Geochim. Cosmochim. Acta 1988, 52, 771

    Article  CAS  Google Scholar 

  3. Theil, E. C.; Raymond, K. N. ,“Transition-Metal Storage, Transport, and Biomineralization” in Bioinorganic Chemistry, I. Bertini, H. Gray, S. Lippard and J. Valentine Eds., University Science Books: Mill Valley, CA, 1994, pp. 1–37.

    Google Scholar 

  4. .Weinberg, E., Biol. & Med. 1993, 36, 215.

    CAS  Google Scholar 

  5. Shakespeare, W. “Act III, Scene 7,” in King Lear

    Google Scholar 

  6. Baker, E. N., , 1994, (in press).

    Google Scholar 

  7. Conrad, M. E.; Umbreit, J. N., Am. J. Hematoiogy 1993, 42, 67.

    Article  CAS  Google Scholar 

  8. Borgna-Pignatti, C; Castriota-Scanderbeg, A., Haematologica 1991, 76, 409.

    CAS  Google Scholar 

  9. Wolfe, L.; Olivieri, N.; Sallan, D.; Colan, S.; Rose, V.; Propper, R.; Freedman, M. H.; Nathan, D. G., New England Journal of Medicine 1985, 312, 1600.

    Article  CAS  Google Scholar 

  10. Herbert, V.; Shaw, S.; Jayatilleke, E.; Stopler-Kasdan, T., Stem Cells 1994, 12, 289.

    Article  CAS  Google Scholar 

  11. Otto, B. R.; Verweij-van Vught, A. M. J. J.; MacLaren, D. M.Critical Revs. Microbiol., 1992, 18, 217.

    Article  CAS  Google Scholar 

  12. Kretchmar, S. A.; Reyes, Z. E.; Raymond, K. N., Biochim. et Biophys. Acta 1988, 956, 85.

    Article  CAS  Google Scholar 

  13. Baker, E. N.; Lindley, P. F.,J. Inorg. Biochem. 1992, 47, 147.

    Article  CAS  Google Scholar 

  14. Zuccula, H. J. The Crystal Structure of Monoferric Human Serum Transferrin Ph.D. Dissertation Thesis, Georgia Institute of Technology, 1993.

    Google Scholar 

  15. Alderton, G.; Ward, W. H.; Fevold, H. L., Archives of Biochemistry 1946, 11, 9–13.

    CAS  Google Scholar 

  16. Schade, A. L.; Caroline, L., Science 1946, 104, 340.

    Article  CAS  Google Scholar 

  17. Iyer, S.; Lcpnnerdal, B., Eur. J. Clin. Nut. ,1993, 47, 232.

    CAS  Google Scholar 

  18. Carrano, C. J.; Raymond, K. N., J. Am. Chem. Soc. 1979, 101, 5401.

    Article  CAS  Google Scholar 

  19. Cowart, R. E.; Kojima, N.; Bates, G. W., J. Biol. Chem. , 1982, 257, 7560.

    CAS  Google Scholar 

  20. Baldwin, D. A., Biochim. Biophys. Acta 1980, 623, 183.

    Article  CAS  Google Scholar 

  21. Kretchmar, S. A.; Raymond, K. N., J. Am. Chem. Soc. 1986, 108, 6212.

    Article  CAS  Google Scholar 

  22. Kretchmar, S. A.; Raymond, K. N., Biol. Metals 1989, 2, 65–68.

    Article  CAS  Google Scholar 

  23. Harris, D. C.; Aisen, P. in Iron Carriers and Iron Proteins’, T. M. Loehr, Ed.; VCH Publishers: New York; pp 239–352, 1989.

    Google Scholar 

  24. Kretchmar Nguyen, S. A.; Craig, A.; Raymond, K. N., J. Am. Chem. Soc. 1993, 115, 6758.

    Article  Google Scholar 

  25. Rodgers, S. J.; Raymond, K. N., J. Med. Chem. ,1983, 26, 439.

    Article  CAS  Google Scholar 

  26. Kretchmar, S. A.; Raymond, K. N., Inorg. Chem. 1988, 27, 1436.

    Article  CAS  Google Scholar 

  27. Baker, E. N.; Anderson, B. F.; Baker, H. M.; Haridas, M.; Norris, G. E.; Rumball, S. V.; Smith, C. A., Pure & Appl. Chem. 1990, 62, 1067.

    Article  CAS  Google Scholar 

  28. Bailey, S.; Evans, R. W.; Garrett, R. C.; Gorinsky, B.; Hasnain, S.; Horsburgh, C.; Jhoti, H.; Lindley, P. F.; Mydin, A.; Sarra, R.; Watson, J. L., Biochemistry, 1988, 27, 5804.

    Article  CAS  Google Scholar 

  29. Anderson, B. F.; Baker, H. M.; Norris, G. E.; Rumball, S. V.; Baker, E. N., Nature 1990, 344,784.

    Article  CAS  Google Scholar 

  30. Aisen, P.; Leibman, A., Biochim. Biophys. Acta 1972, 257, 314.

    Article  CAS  Google Scholar 

  31. Chung, T. D. Y.; Raymond, K. N., J. Am. Chem. Soc. 1993, 115, 6765..

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raymond, K.N., Bryan, B.L. (1995). The Coordination Chemistry of Iron in Biological Transport and Storage; Iron Removal in Vivo . In: Kessissoglou, D.P. (eds) Bioinorganic Chemistry. NATO ASI Series, vol 459. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0255-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0255-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4113-3

  • Online ISBN: 978-94-011-0255-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics