Skip to main content

Breakdown of Slender Vortices

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 30))

Abstract

The first observation of the breakdown of leading-edge vortices above a delta wing, made by Peckham and Atkinson (1957), initiated a series of investigations of this problem during the last three decades. In spite of extensive theoretical and experimental research since, no generally accepted explanation for vortex breakdown has been found. The continued interest in this phenomenon is demonstrated by several reviews (Hall 1972; Leibovich 1978; Escudier 1988) and two conferences on vortex breakdown in Aachen, Germany in 1985 and Baden, Switzerland in 1987. Since then, increases in computational power and new experimental techniques have made possible the simulation of unsteady, three-dimensional flows and the comparison of the simulations with experimental results. Vortex breakdown is one such unsteady three-dimensional flow. The major aim of this chapter is, therefore, to review these latest developments in vortex breakdown research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Althaus, W. and Krause, E. 1990 Flow Visualization of Flows with Concentrated Vorticity. Progress Report Dec. 1990, EC Contract SC1 -0212

    Google Scholar 

  • Althaus, W. and Krause, E. 1991 Flow Visualization of Flows with Concentrated Vorticity. Progress Report Dec. 1991, EC Contract SC1 -0212

    Google Scholar 

  • Althaus, W., Krause, E., Hofhaus, J. and Weimer, M. 1994a Bubble-and spiral-type breakdown of slender vortices. Experimental Thermal and Fluid Sciences (to appear).

    Google Scholar 

  • Althaus, W., Krause, E., Hofhaus, J. and Weimer, M. 1994b Vortex breakdown: transition between bubble-and spiral-type breakdown. Meccanica (to appear).

    Google Scholar 

  • Althaus, W., Weimer, M. and Proff, U. 1994c Manuscript in preparation.

    Google Scholar 

  • Ashley, H., Katz, J., Jarrah, M. A. and Vaneck, T. 1990 Unsteady aerodynamic loading of delta wings for low and high angles of attack. International Symp. on Nonsteady Fluid Dynamics, ASME FED 92.

    Google Scholar 

  • Benjamin, T. B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14, 593.

    Article  MathSciNet  ADS  Google Scholar 

  • Benjamin, T. B. 1965 Significance of the vortex breakdown phenomenon. Trans. Am. Soc. Mech. Engrs., J. Basic Engng. 87, 518 and 1091.

    Article  Google Scholar 

  • Benjamin, T. B. 1967 Some developments in the theory of vortex breakdown. J. Fluid Mech. 28, 65.

    Article  ADS  MATH  Google Scholar 

  • Brennenstuhl, U. and Hummel, D. 1982 Vortex formation over double-delta wings. ICAS Paper 82-6.6.3.

    Google Scholar 

  • Breuer, M. and Hänel, D. 1989 Solution of the 3-D incompressible Navier-Stokes equations for the simulation of vortex breakdown. Proc. of the 8th GAMMM-Conf. on Numerical Methods in Fluid Mechanics.

    Google Scholar 

  • Breuer, M. 1991 Numerische Lösung der Navier-Stokes Gleichungen für drei-dimensionale inkompressible instationäre Strö94mungen zur Simulation des Wirbelaufplatzens. Ph.D. Thesis Aerodyn. Inst., RWTH Aachen.

    Google Scholar 

  • Breuer, M. and Hänel, D. 1993 A dual time-stepping method for 3-D, viscous, incompressible vortex flows. Computers and Fluids 22, 467–484.

    Article  ADS  MATH  Google Scholar 

  • Breuer, M., Hänel, D., Klöker, J. and Meinke, M. 1993 Computation of unsteady vortical flows. Computers and Fluids, 22, 229–237.

    Article  ADS  MATH  Google Scholar 

  • Brown, G. L. and Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 2: Physical mechanism. J. Fluid Mech. 221, 553–576.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Brücker, Ch. and Althaus, W. 1992 Study of vortex breakdown by particle tracking velocimetry (PTV). Part 1: Bubble-type vortex breakdown. Exp. Fluids 13, 339–349.

    Article  Google Scholar 

  • Brücker, Ch. 1993a Study of vortex breakdown by particle tracking velocimetry (PTV). Part 2: Spiral-type vortex breakdown. Exp. Fluids 14, 133–139.

    Article  Google Scholar 

  • Brücker, Ch. 1993b Experimentelle Untersuchung des Wirbelaufplatzens in Rohren mit der Particle Image Velocimetry (PIV). Ph.D. Thesis, Aerodyn. Inst., RWTH Aachen.

    Google Scholar 

  • Campbell, J. F. 1976 Augmentation of lift by spanwise blowing. J. Aircraft 13, 727–732.

    Article  Google Scholar 

  • Chamberlain, J. P. and Liu, C. H. 1984 Navier-Stokes calculations for unsteady three-dimensional vortical flow in unbounded domains. AIAA-84-0418.

    Google Scholar 

  • Chorin, A. J. 1967 A numerical method for solving incompressible viscous flow. J. Comput. Phys. 2, 12–26.

    Article  ADS  MATH  Google Scholar 

  • Elle, B. J. 1961 An investigation at low speed of the flow near the apex of thin delta wings with sharp leading edges. Aero. Res. Council, R and M 3176.

    Google Scholar 

  • Erickson, G. E. 1982 Water-tunnel studies of leading-edge vortices. J. Aircraft 19, 442–448.

    Article  Google Scholar 

  • Ericsson, L. E. and Reding, J. P. 1987 Fluid dynamics of unsteady separated flow. Part II. Lifting surfaces. Prog. Aerospace Sci. 24, 249–356.

    Article  ADS  Google Scholar 

  • Escudier, M. P. 1988 Vortex breakdown: Observations and explanations. Prog. Aerospace Sci. 25, 189–229.

    Article  ADS  Google Scholar 

  • Escudier, M. P. and Keller, J. J. 1983 Vortex breakdown: a two-stage transition. AGARD CP No. 342 Aerodynamics of vortical type flows in three dimensions, paper 25.

    Google Scholar 

  • Escudier, M. P. and Keller, J. J. 1985 Essential aspects of vortex breakdown. Proc. Colloquium on Vortex Breakdown, Sonderforschungsbereich 25, Wirbelströmungen in der Flugtechnik, RWTH Aachen, pp. 119–144.

    Google Scholar 

  • Faler, J. H. and Leibovich, S. 1978: An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. 86, 313–335.

    Article  ADS  Google Scholar 

  • Fletcher, C. A. J. 1988 Computational techniques for fluid dynamics, Vols. I, and II, Springer-Verlag.

    Book  MATH  Google Scholar 

  • Fujii, K., Gavali, S. and Hoist, T. L. 1987 Evaluation of Navier-Stokes and Euler solutions for leading-edge separation vortices. NASA Technical Memorandum 89458.

    Google Scholar 

  • Garg, A. K. and Leibovich, S. 1979 Phys. Fluids 22, 2053.

    Article  ADS  Google Scholar 

  • Gatski, T. B. and Spall, R. E. 1991 Numerical studies of vortex breakdown: from helices to bubbles. Fourth Int. Symposium on Comp. Fluid Dynamics, vol I, pp. 418–423.

    Google Scholar 

  • Grabowski, W. J. and Berger, S. A. 1967 Solutions of the Navier-Stokes equations for vortex breakdown. J. Fluid Mech. 75, 525–544.

    Article  ADS  Google Scholar 

  • Hänel, D. and Breuer, M. 1990 Numerical solution of the incompressible Navier-Stokes equations for unsteady three-dimensional flow. Third International Congress of Fluid Dynamics.

    Google Scholar 

  • Hall, M. G. 1972 Vortex breakdown. Ann. Rev. Fluid Mech. 4, 195–218.

    Article  ADS  Google Scholar 

  • Hall, M. G. 1967 A new approach to vortex breakdown. Proc. Heat Transfer Fluid Mech. Stanford Univ. Press, 319–340. 10th Intern. Conf. on Numerical Methods in Fluid Dynamics.

    Google Scholar 

  • Harvey, J. K. 1962: Some observations of the vortex breakdown phenomenon. J. Fluid Mech. 14, 585–592.

    Article  ADS  MATH  Google Scholar 

  • Hsu, C.-H., and Liu, C. H. 1988 Numerical simulation of the vortical flow over a round-edged double-delta wing. Southeastern Conference on Theoretical and Applied Mechanics.

    Google Scholar 

  • Hummel, D. 1965 Untersuchung über das Aufplatzen der Wirbel an schlanken Deltaflügeln. Z. Flugwiss. 15, 376–385.

    Google Scholar 

  • Jones, J. P. 1960 The breakdown of vortices in separated flow. University of Southampton U.S.A.A. Report 140.

    Google Scholar 

  • Jones, J. P. 1964 On the explanation of vortex breakdown. IUTAM Symposium on Vortex Motion, Ann Arbor.

    Google Scholar 

  • Keller, J. J., Egli, W. and Exley, J. 1985 Force-and loss-free transitions between flow states. J. Appl. Math. Phys. 36, 854–889.

    Article  MathSciNet  MATH  Google Scholar 

  • Keller, J. J., Egli, W. and Exley, J. 1987 Studies of vortex-dominated flows (eds. M. Y. Hussaini and M. D. Salas) Springer-Verlag.

    Google Scholar 

  • Kopecky, R. M. and Torrance, K. E. 1973 Comput. Fluids 1, 289.

    Article  MATH  Google Scholar 

  • Krause, E. 1990 The solution to the problem of vortex breakdown. Lecture Notes in Physics 371, 35–50.

    Article  ADS  Google Scholar 

  • Krause, E. and Althaus, W. 1992 Vortex breakdown: mechanism of initiation and change of mode. Workshop on Analysis and Testing of High Angle of Attack Aerodynamics, Tokyo, Japan.

    Google Scholar 

  • Lambourne, N. C., Bryer, D. W., and Maybrey, J. F. M. 1964 The behaviour of leading-edge vortices over a delta wing following a sudden change of incidence. Great Britain Aeronautical Research Council Reports and Memoranda 345.

    Google Scholar 

  • Lambourne, N. C. and Bryer, D. W. 1961 The bursting of leading-edge vortices -some observations and discussions of the phenomenon. Aeronautical Research Council, R. & M. 3282, 49–68.

    Google Scholar 

  • Lee, M., Shih, C. and Ho, C. N. 1987 Response of a delta wing in steady and unsteady flow. Proc. Forum on Unsteady Flow Separation. ASME FED 52, 19–24.

    Google Scholar 

  • Lee, M. and Ho, C.M. 1989 Vortex dynamics of delta wings. Lecture Notes in Engineering 46 (eds. C. A. Brebbia and S. A. Orszag), Springer-Verlag.

    Google Scholar 

  • Leibovich, S. 1978 The structure of vortex breakdown. Ann. Rev. Fluid Mech. 10, 221–246.

    Article  ADS  Google Scholar 

  • Leibovich, S. 1983 Vortex stability and breakdown: survey and extension. AIAA J. 22, 1192–1206.

    ADS  Google Scholar 

  • Leibovich, S. and Stewartson, K. 1983: A sufficient condition for the instability of columnar vortices. J. Fluid Mech. 126, 335–356.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Leibovich, S. and Kribus, A. 1990 Large-amplitude wavetrains and solitary waves in vortices. J. Fluid Mech. 216, 459–504.

    Article  ADS  MATH  Google Scholar 

  • Lin, J. C. and Rockwell, D. 1993 Transient structure of vortex breakdown on a delta wing at high angle of attack. Submitted to AIAA Journal.

    Google Scholar 

  • Lopez, J. M. 1990 Axisymmetric vortex breakdown. Part 1: Confined swirling flow. J. Fluid Mech. 221, 533–552.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Lopez, J. M. and Perry, A. D. 1991 Axisymmetric vortex breakdown. Part 3: Onset of periodic flow and chaotic advection. J. Fluid Mech. 234, 449–471.

    Article  MathSciNet  ADS  Google Scholar 

  • Ludwieg, H. 1962 Zur Erklärung der Instabilität der über angestellten Deltaflügeln auftretenden freien Wrbelkerne. Z. Flugwiss. 10, 242.

    MATH  Google Scholar 

  • Ludwieg, H. 1964 Explanation of vortex breakdown by the stability theory for spiralling flows. IUTAM Symposium on Vortex Motions, Ann. Arbor.

    Google Scholar 

  • Lugt, H. J. and Abboud, M. 1987 Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid. J. Fluid Mech. 179, 179–200.

    Article  ADS  MATH  Google Scholar 

  • Magness, C., Robinson, O. and Rockwell, D. 1993 Instantaneous topology of the unsteady leading-edge vortex at high angle of attack. AIAA J. (in press).

    Google Scholar 

  • Menne, S. 1986 Rotationssymmetrische Wirbel in achsparalleler Str”omung. Ph.D. Thesis. Aerodynamisches Institut, RWTH Aachen.

    Google Scholar 

  • Merkle, C. L. and Athavale, M. 1987 Time-accurate unsteady incompressible flow algorithms based on artifical compressiblity. AIAA-87-1137.

    Google Scholar 

  • Nakamura, Y. and Uchida, S. 1987 Several approaches to the study of vortex breakdown. 2. Int. Coll. on Vortical Flows, BBC Research Center, Switzerland.

    Google Scholar 

  • Peake, D. J. and Tobak, M. 1983: On issues concerning flow separation and vortical flows in three dimensions. AGARD CP No. 342.

    Google Scholar 

  • Peckham, D. H. and Atkinson, S. A. 1957 Preliminary results of low speed wind tunnel test on a Ghotic wing of aspect ratio 1.0. British Aeronaut. Res. Council, CP 508.

    Google Scholar 

  • Peyret, R. and Taylor, T. D. 1983 Computational Methods for Fluid Flow. Springer-Verlag.

    Book  MATH  Google Scholar 

  • Polhamus, E. C. 1971 Predictions of vortex-lift characteristics by a leading-edge-suction analogy. J. Aircraft 8, 193–199.

    Article  Google Scholar 

  • Reyna, L. G. and Menne, S. 1988 Numerical prediction of flow in slender vortices. Cornp. and Fluids 16, 239–256.

    Article  MATH  Google Scholar 

  • Reynolds, W. C. and Carr, L. W. 1985 Review of unsteady, driven, separated flows. AIAA 85-0527.

    Google Scholar 

  • Reynolds, G. A. and Abathi, A. A. 1987 Instabilities in leading-edge vortex development. AIAA 87-2424.

    Google Scholar 

  • Rockwell, D. 1993 Three-dimensional flow structure on delta wings at high angle-of-attack: Experimental concepts and issues. AIAA 93-0550.

    Google Scholar 

  • Sarpkaya, T. 1971 On stationary and travelling vortex breakdowns. J. Fluid Mech. 45, 545–559,

    Article  ADS  Google Scholar 

  • Sarpkaya, T. 1971 Vortex breakdown in swirling conical flows. AIAA J. 9, 1792–1799.

    Article  ADS  Google Scholar 

  • Sarpkaya, T. 1974 Effect of the adverse pressure gradient on vortex breakdown. AIAA J. 12, 602–607.

    Article  ADS  Google Scholar 

  • Sforza, P. M., Stasi, W., Pazienza, W. and Smorto, M. 1978 Flow measurements in leading-edge devices. AIAA J. 16, 218–224.

    Article  ADS  Google Scholar 

  • Shi, X. G. 1983 Numerische Simulation des Aufplatzens von Wirbeln. Dissertation, Aerodynamisches Institut, RWTH Aachen, Germany.

    Google Scholar 

  • Singh, P. I. and Uberoi, M. S. 1976 Phys. Fluids 19, 1858.

    Article  ADS  Google Scholar 

  • Spall, R. E. and Gatski, T. B. 1987 A numerical simulation of vortex breakdown. ASME Forum on Unsteady Flow Separation, FED 52, 25–33.

    ADS  Google Scholar 

  • Spall, R. E., Gatski, T. B. and Ash R. L. 1990 The structure and dynamics of bubble-type vortex breakdown. Proc. R. Soc. Lond. A. 429, 613–637.

    Article  ADS  Google Scholar 

  • Spall, R. E., Gatski, T.B and Grosch, C.E. 1987 A criterion for vortex breakdown. Phys. Fluid 30.

    Google Scholar 

  • Spall, R. E. and Gatski, T. B. 1990 A computational study of the taxonomy of vortex breakdown. AIAA-90-1624.

    Google Scholar 

  • Squire, H. B. 1960 Analysis of the ‘vortex breakdown’ phenomenon. Part I. Aero. Dept. Imperial Coll. London, Rep. 102.

    Google Scholar 

  • Squire, H. B. 1962 Miszellaneen der Angewandten Mechanik (ed. M. Schaffer) Akademie.

    Google Scholar 

  • Staufenbiel, R., Helming, Th. and Vitting, Th. 1987 Controlled breakdown of tip vortices. 2. Int. Colloquium on vortical flows, BBC research center, Switzerland.

    Google Scholar 

  • Swithenbank, J. and Chigier, N. 1969: Vortex mixing for supersonic combustion. Proc. 12th Symp. Combust. Inst., pp. 1153–1162.

    Google Scholar 

  • Towfighi, J. and Rockwell, D. 1993 Instantaneous structure of vortex breakdown on a delta wing via particle image velocimetry. AIAA J. 31, 1160–1162.

    Article  ADS  Google Scholar 

  • Uchida, S., Nakamura, Y. and Oshawa, M. 1985 Experiments on the axisymmetric vortex breakdown in a swirling air flow. Trans. Jpn. Soc. Aero. Sci. 27, 206–216.

    Google Scholar 

  • Visbal, M. R. 1993a Computational study of vortex breakdown on a pitching delta wing. AIAA 93-2974.

    Google Scholar 

  • Visbal, M. R. 1993b Structure of vortex breakdown on a pitching delta wing.AIAA 93-0434.

    Google Scholar 

  • Wentz, W. H. and Kohlmann, D. L. 1971 Vortex breakdown on slender sharp-edged wings. J. Aircraft 8, 156–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Althaus, W., Brücker, C., Weimer, M. (1995). Breakdown of Slender Vortices. In: Green, S.I. (eds) Fluid Vortices. Fluid Mechanics and Its Applications, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0249-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0249-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4111-9

  • Online ISBN: 978-94-011-0249-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics