Skip to main content

Ethylene biosynthesis and action: a case of conservation

  • Chapter
Signals and Signal Transduction Pathways in Plants

Abstract

Ethylene is one of the simplest organic molecules with biological activity. At concentrations as low as 0.1 ppm in air, it has been shown to have dramatic effects on plant growth and development [1]. Neljubov [78] was the first to show that ethylene has three major effects in etiolated pea seedlings called the triple response: (1) diageotropic growth, (2) thickening of stem and inhibition of stem elongation, and (3) exaggeration of apical hook curvature. Since then, numerous ethylene effects have been described in light-grown plants such as sex determination in curcurbits, fruit ripening in climacteric fruits, epinastic curvature, flower senescence, and root initiation [1]. Interestingly, ethylene has also been shown to have opposite effects in some plants; for instance, it inhibits stem elongation in most dicots, whereas in some aquatic dicots and rice, it stimulates growth [1, 45, 72].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles FB, Morgan PW, Saltveit ME, Jr: Ethylene in Plant Biology. Academic Press, New York (1992).

    Google Scholar 

  2. Alexander D, Goodman RM, Gut-Rella M, Glascock C, Weymann K, Friedrich L, Maddox D, Ahl Goy P, Luntz T, Ward E, Ryals J: Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein la. Proc Natl Acad Sci USA 90: 7327–7331 (1993).

    Article  PubMed  CAS  Google Scholar 

  3. Arico B, Miller JF, Roy C, Stibitz S, Monack D, Falkow S: Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 86: 6671–6675 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. Ayub RA, Rombaldi C, Petitprez M, Latche A, Pech JC, Lelievre JM: Biochemical and immunocytological characterization of ACC oxidase in transgenic grape cells. In: Pech JC, Latche A, Balague C (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene, pp. 98–99. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).

    Google Scholar 

  5. Bailey BA, Avni A, Li N, Mattoo AK: Nucleotide sequence of the Nicotiana tabacum cv Xanthi gene encoding 1-aminocyclopropane-l-carboxylate synthase. Plant Physiol 100: 1615–1616 (1992).

    Article  PubMed  CAS  Google Scholar 

  6. Bent AF, Innes RW, Ecker JR, Staskawicz BJ: Disease development in ethylene-insensitive Arabidopsis thaliana infected with virulent and avirulent Psedomonas and Xanthomonas pathogens. Mol Plant-Microbe Interact 5: 372–378 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. Bleecker AB, Estelle MA, Somerville G, Kende H: Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241: 1086–1089 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. Botella JR, Arteca JM, Schlagnhaufer CD, Arteca RN: Identification and characterization of a full-length cDNA encoding for an auxin-induced 1-aminocyclopropane-l-carboxylate synthase from etiolated mung bean hypocotyl segments and expression of its mRNA in response to indole-3-acetic acid. Plant Mol Biol 20: 425–436 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. Botella JR, Schlagnhaufer CD, Arteca JM, Arteca RN: Identification of two new members of the 1-amino-cyclopropane-1-carboxylate synthase-encoding multigene family in mung bean. Gene 123: 249–253 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. Botella JR, Schlagnhaufer CD, Arteca RN, Phillips AT: Identification and characterization of three putative genes for 1-aminocyclopropane-l-carboxylate synthase from etiolated mung bean hypocotyl segments. Plant Mol Biol 18: 793–797 (1992).

    Article  PubMed  CAS  Google Scholar 

  11. Brand AH, Perrimon N: Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis. Genes Devel 8: 629–639 (1994).

    Article  PubMed  CAS  Google Scholar 

  12. Broglie KE, Biddle P, Cressman R, Broglie R: Functional analysis of DNA sequences responsible for ethylene regulation of a bean chitinase gene in transgenic tobacco. Plant Cell 1: 599–607 (1989).

    PubMed  CAS  Google Scholar 

  13. Burg SP, Burg EA: Molecular requirements for the biological activity of ethylene. Plant Physiol 42: 144–152 (1967).

    Article  PubMed  CAS  Google Scholar 

  14. Callahan AM, Morgens PH, Wright P, Nichols Jr KE: Comparison of Pch313 (pTOM13 homolog) RNA accumulation during fruit softening and wounding of two phenotypically different peach cultivars. Plant Physiol 100: 482–488 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. Calogeraki L, Barnier JV, Eychene A, Felder MP, Calothy G, Marx M: Genomic organization and nucleotide sequence of the coding region of the chicken c-Rmil (B-raf-l) proto-oncogene. Biochem Biophys Res Comm 193: 1324–1331 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. Chang C, Kwok SF, Bleecker AB, Meyerowitz EM: Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539–544 (1993).

    Article  PubMed  CAS  Google Scholar 

  17. Coque JJ, Martin JF, Calzada JG, Liras P: The cephamycin biosynthetic genes pcbAB, encoding a large multidomain peptide synthetase, and pcbC of Nocardia lactamdurans are clustered together in an organization different from the same genes in Acremonium chrysogenum and Penicillium chrysogenum. Mol Microbiol 5: 1125–1133(1991).

    Article  PubMed  CAS  Google Scholar 

  18. Deikman J, Fischer RL: Interaction of a DNA binding factor with the 5′-flanking region of an ethylene-responsive fruit ripening gene from tomato. EMBO J 7: 3315–3320(1988).

    PubMed  CAS  Google Scholar 

  19. Dickson B, Sprenger F, Morrison D, Hafen E: Raf functions downstream of Rasl in the Sevenless signal transduction pathway. Nature 360: 600–603 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. Dong JG, Fernandez-Maculet JC, Yang SF: Purification and characterization of 1-aminocyclopropane-l-carboxylate oxidase from apple fruit. Proc Natl Acad Sci USA 89: 9789–9793 (1992a).

    Article  PubMed  CAS  Google Scholar 

  21. Dong JG, Kim WT, Yip WK, Thompson GA, Li L, Bennett AB, Yang SF: Cloning of a cDNA encoding 1-aminocyclopropane-l-carboxylate synthase and expression of its mRNA in ripening apple fruit. Planta 185: 38–45 (1991).

    Article  CAS  Google Scholar 

  22. Dong JG, Olson D, Silverstone A, Yang S-F: Sequence of a cDNA Coding for a 1-aminocyclopropane-l-carboxylate oxidase homolog from apple fruit. Plant Physiol 98: 1530–1531 (1992).

    Article  PubMed  CAS  Google Scholar 

  23. Ecker JR, Theologis A: Ethylene: a unique signalling molecule. In: Somerville C, Meyerowitz E (eds), Arabidopsis 485–521. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1994).

    Google Scholar 

  24. Eyal Y, Meller Y, Lev-Yadun S, Fluhr R: A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J 4: 225–234 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. Fabian JR, Morrison DK, Daar IO: Requirement for raf and map kinase function during the meiotic maturation of Xenopus oocytes. J Cell Biol 122: 645–652 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. Fernandez-Maculet JC, Dong JG, Yang SF: Activation of 1-aminocyclopropane-l-carboxylate oxidase by carbon dioxide. Biochem Biophys Res Comm 193: 1168–1173 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. Fray RG, Grierson D: Molecular genetics of tomato fruit ripening. Trends Genet 9: 438–443 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. Fujino DW, Burger DW, Bradford KJ: Ineffectiveness of ethylene biosynthetic and action inhibitors in phenotypically reverting the epinastic mutant of tomato (Lycopersicon esculentum Mill.). J Plant Growth Regul 8: 53–61 (1989).

    Article  CAS  Google Scholar 

  29. Fujino DW, Burger DW, Yang S-F, Bradford KJ: Characterization of an ethylene overproducing mutant of tomato (Lycopersicon esculentum Mill. Cultivar VFN8). Plant Physiol 88: 774–779 (1988).

    Article  PubMed  CAS  Google Scholar 

  30. Giovannoni JJ, DellaPenna D, Lashbrook CC, Bennett AB, Fischer RL: Expression of a chimeric polygalacturonase gene in transgenic rin (ripening inhibitor) tomato fruit. In: Bennett AB, O’Neill SD (eds) Horticultural Biotechnology, pp. 217–227. Wiley-Liss, New York (1990).

    Google Scholar 

  31. Guo L, Arteca RN, Phillips AT, Liu Y: Purification and characterization of 1-aminocyclopropane-l-carboxylate N-malonyltranferase from etiolated mung bean hypocotyls. Plant Physiol 100: 2041–2045 (1992).

    Article  PubMed  CAS  Google Scholar 

  32. Gupta Williams N, Roberts TM: Signal transduction pathways involving the Raf proto-oncogene. Cancer Metastasis Rev 13: 105–116 (1994).

    Article  Google Scholar 

  33. Guzman P, Ecker JR: Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2: 513–523 (1990).

    PubMed  CAS  Google Scholar 

  34. Hamilton AJ, Bouzawen M, Grierson D: Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc Natl Acad Sci USA 88: 7434–7437 (1991).

    Article  PubMed  CAS  Google Scholar 

  35. Hamilton AJ, Lycett GW, Grierson D: Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287 (1990).

    Article  CAS  Google Scholar 

  36. Han M, Golden A, Han Y, Sternberg PW: C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation. Nature 363: 133–140 (1993).

    Article  PubMed  CAS  Google Scholar 

  37. Hargrove JL, Scoble HA, Mathews WR, Baumstark BR, Biemann K: The structure of tyrosine aminotransferase: evidence for domains involved in catalysis and enzyme turnover. J Biol Chem 264: 45–53 (1989).

    PubMed  CAS  Google Scholar 

  38. Hedden P: 2-Oxoglutarate-dependent dioxygenases in plants: mechanism and function. Biochem Soc Trans 20: 373–376 (1992).

    PubMed  CAS  Google Scholar 

  39. Holdsworth MJ, Schuch W, Grierson D: Nucleotide sequence of an ethylene-related gene from tomato. Nucl Acids Res 15: 10600 (1987).

    Article  PubMed  CAS  Google Scholar 

  40. Hrabak EM, Willis DK: The lemA gene required for pathogenicity of Pseudomonas syringae pv. syringae on bean is a member of a family of two-component regulators. J Bact 174: 3011–3020 (1992).

    PubMed  CAS  Google Scholar 

  41. Huang P-L, Parks JE, Rottmann WH, Theologis A: Two genes encoding 1-aminocyclopropane-l-carboxylate synthase in zucchini (Cucurbita pepo) are clustered and similar, but differentially expressed. Proc Natl Acad Sci USA 88: 7021–7025 (1991).

    Article  PubMed  CAS  Google Scholar 

  42. Hughes DA: Histidine kinases hog the limelight. Nature 369: 187–188 (1994).

    Article  PubMed  CAS  Google Scholar 

  43. Iuchi S: Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J Biol Chem 268: 23972–23980 (1993).

    PubMed  CAS  Google Scholar 

  44. Iuchi S, Matsuda Z, Fujiwara T, Lin EC: The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol 4: 715–727 (1990).

    Article  PubMed  CAS  Google Scholar 

  45. Jackson MB: Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36: 145–174 (1985).

    Article  CAS  Google Scholar 

  46. Kende H: Enzymes of ethylene biosynthesis. Plant Physiol 91: 1–4 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. Kende H: Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44: 283–307 (1993).

    Article  CAS  Google Scholar 

  48. Kieber JJ, Ecker JR: Ethylene gas: it’s not just for ripening any more! Trends Genet 9: 356–362 (1993).

    Article  PubMed  CAS  Google Scholar 

  49. Kieber J J, Rothenberg M, Roman G, Feldmann KA, Ecker JR: CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72: 427–441 (1993).

    Article  PubMed  CAS  Google Scholar 

  50. Kim WT, Silverstone A, Yip WK, Dong JG, Yang SF: Induction of 1-aminocyclopropane-l-carboxylate synthase mRNA by auxin in mung bean hypocotyls and cultured apple shoots. Plant Physiol 98: 465–471 (1992).

    Article  PubMed  CAS  Google Scholar 

  51. Kim WT, Yang SF: Turnover of 1-aminocyclopropane- 1-carboxylic acid synthase protein in wounded tomato fruit tissue. Plant Physiol 100: 1126–1131 (1992).

    Article  PubMed  CAS  Google Scholar 

  52. Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM: Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3: 1187–1193(1991).

    PubMed  CAS  Google Scholar 

  53. Kock M, Hamilton A, Grierson D: ETH1, sl gene involved in ethylene synthesis in tomato. Plant Mol Biol 17: 141–142 (1991).

    Article  PubMed  CAS  Google Scholar 

  54. Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ: The Never Ripe mutation blocks ethylene perception in tomato. Plant Cell 6: 521–530 (1994).

    PubMed  CAS  Google Scholar 

  55. Latche A, Dupille E, Rombaldi C, Cleyet-Marel JC, Lelievre JM, Pech JC: Purification, characterization and subcellular localization of ACC oxidase from fruits. In: Pech JC, Latche A, Balague C (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene, pp. 39–45. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).

    Google Scholar 

  56. Lawton KA, Potter SL, Uknes S, Ryals J: Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell 6: 581–588 (1994).

    PubMed  CAS  Google Scholar 

  57. Li N, Mattoo AK: Deletion of the carboxyl-terminal region of 1-aminocyclopropane-l-carboxylic acid synthase, a key protein in the biosynthesis of ethylene, results in catalyticaly hyperactive, monomeric enzyme. J Biol Chem 269: 6908–6917 (1994).

    PubMed  CAS  Google Scholar 

  58. Liang X, Abel S, Keller JA, Shen NF, Theologis A: The 1-aminocyclopropane-l-carboxylate synthase gene family of Arabidopsis thaliana. Proc Natl Acad Sci USA 89: 11046–11050(1992).

    Article  PubMed  CAS  Google Scholar 

  59. Lincoln JE, Campbell AD, Oetiker J, Rottmann WH, Oeller PW, Shen NF, Theologis A: LE-ACS4, a fruit ripening and wound-induced 1-aminocyclopropane-l-carboxylate synthase gene of tomato (Lycopersicon esculentum). J Biol Chem 268: 19422–19430 (1993).

    PubMed  CAS  Google Scholar 

  60. Lincoln JE, Cordes S, Read E, Fischer RL: Regulation of gene expression by ethylene during Lycopersicon esculentum (tomato) fruit development. Proc Natl Acad Sci USA 84: 2793–2797 (1987).

    Article  PubMed  CAS  Google Scholar 

  61. Lincoln JE, Fischer RL: Diverse mechanisms for the regulation of ethylene-inducible gene expression. Mol Gen Genet 212: 71–75 (1988).

    Article  PubMed  CAS  Google Scholar 

  62. Liu D, Li N, Dube S, Kalinski A, Herman E, Mattoo AK: Molecular characterization of a rapidly and transiently wound-induced soybean (Glycine max L.) gene encoding 1-aminocyclopropane-l-carboxylate synthase. Plant Cell Physiol 34: 1151–1157 (1993).

    CAS  Google Scholar 

  63. MacDiarmid CWB, Gardner RC: A cDNA sequence from kiwifruit homologous to 1-aminocyclopropane-l-carboxylic acid oxidase. Plant Physiol 101: 691–692 (1993).

    Article  PubMed  CAS  Google Scholar 

  64. Macnicol AM, Muslin AJ, Williams LT: Raf-1 kinase is essential for early Xenopus development and mediates the induction of mesoderm by FGF. Cell 73: 571–583 (1993).

    Article  PubMed  CAS  Google Scholar 

  65. Maeda T, Wurgler-Murphy SM, Saito H: A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369: 242–245 (1994).

    Article  PubMed  CAS  Google Scholar 

  66. Matsuda J, Okabe S, Hashimoto T, Yamada Y: Molecular cloning of hyoscyamine-6-β-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J Biol Chem 266: 9460–9464 (1991).

    PubMed  CAS  Google Scholar 

  67. McGarvey DJ, Christoffersen RE: Characterization and kinetic parameters of ethylene-forming enzyme from avocado fruit. J Biol Chem 267: 5964–5967 (1992).

    PubMed  CAS  Google Scholar 

  68. McGarvey DJ, Yu H, Christoffersen RE: Nucleotide sequence of a ripening-related cDNA from avocado fruit. Plant Mol Biol 15: 165–167 (1990).

    Article  PubMed  CAS  Google Scholar 

  69. Mehta PK, Christen P: Homology of 1-aminocyclopropane-1-carboxylate synthase, 8-amino-7-oxononanoate synthase, 2-amino-6-caprolactam racemase, 2,2-dialkyl-glycine decarboxylase, glutamate-1-semialdehyde 2,1-aminomutase and isopenicillin-N-epimerase with ami-notransferases. Biochem Biophys Res Comm 198: 138–143 (1994).

    Article  PubMed  CAS  Google Scholar 

  70. Mehta PK, Hale TI, Christen P: Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214: 549–561 (1993).

    Article  PubMed  CAS  Google Scholar 

  71. Meller Y, Sessa G, Eyal Y, Fluhr R: DNA-protein interactions on a cis-DNA element essential for ethylene regulation. Plant Mol Biol 23: 453–463 (1993).

    Article  PubMed  CAS  Google Scholar 

  72. Metraux J-P, Kende H: The role of ethylene in the growth response of submerged deep water rice. Plant Physiol 72: 441–446 (1983).

    Article  PubMed  CAS  Google Scholar 

  73. Montgomery JR: Regulation of gene expression during tomato fruit ripening. Ph. D. thesis, University of California, Berkeley (1993).

    Google Scholar 

  74. Montgomery J, Goldman S, Deikman J, Margossian L, Fischer RL: Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90: 5939–5943 (1993).

    Article  PubMed  CAS  Google Scholar 

  75. Nagasawa S, Tokishita S, Aiba H, Mizuno T: A novel sensor-regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol Microbiol 6: 799–807 (1992).

    Article  PubMed  CAS  Google Scholar 

  76. Nakagawa N, Mori H, Yamazaki K, Imaseki H: Cloning of a complementary DNA for auxin-induced 1-aminocy-clopropane-1 carboxylate synthase and differential expression of the gene by auxin and wounding. Plant Cell Physiol 32: 1153–1163 (1991).

    CAS  Google Scholar 

  77. Nakajima N, Mori H, Yamazaki K, Imaseki H: Molecular cloning and sequence of a complementary DNA encoding 1-aminocyclopropane-l-carboxylate synthase induced by tissue wounding. Plant Cell Physiol 31: 1021–1029 (1990).

    CAS  Google Scholar 

  78. Neljubov D: Uber die horizontale Mutation der Stengel von Pisum sativum und einiger anderer. Pflanzen Beih Bot Zentralbl 10: 128–239 (1901).

    Google Scholar 

  79. Oeller PW, Wong LM, Taylor LP, Pike DA, Theologis A: Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439 (1991).

    Article  PubMed  CAS  Google Scholar 

  80. Olson DC, White JA, Edelman L, Harkins RN, Kende H: Differential expression of two genes for 1-aminocy-clopropane-l-carboxylate synthase in tomato fruits. Proc Natl Acad Sci USA 88: 5340–5344 (1991).

    Article  PubMed  CAS  Google Scholar 

  81. Ota IM, Varshavsky A: A yeast protein similar to bacterial two-component regulators. Science 262: 566–569 (1993).

    Article  PubMed  CAS  Google Scholar 

  82. Park KY, Drory A, Woodson WR: Molecular cloning of an 1-aminocyclopropane-l-carboxylate synthase from senescing carnation flower petals. Plant Mol Biol 18: 377–386 (1992).

    Article  PubMed  CAS  Google Scholar 

  83. Parkinson JS: Signal transduction schemes of bacteria. Cell 73: 857–871 (1993).

    Article  PubMed  CAS  Google Scholar 

  84. Parkinson JS, Kofoid EC: Communication modules in bacterial signalling proteins. Annu Rev Genet 26: 71–112(1992).

    Article  PubMed  CAS  Google Scholar 

  85. Peleman J, Boerjan W, Engler G, Seurinck J, Botterman J, Alliotte T, Van Montagu M, Inze D: Strong cellular preference in the expression of a housekeeping gene of Arabidopsis thaliana encoding S-adenosylmethionine synthetase. Plant Cell 1: 81–93 (1989).

    PubMed  CAS  Google Scholar 

  86. Penarrubia L, Aguilar M, Margossian L, Fischer RL: An antisense gene stimulates ethylene hormone production during tomato fruit ripening. Plant Cell 4: 681–687 (1992).

    PubMed  CAS  Google Scholar 

  87. Pirrung MC, Kaiser LM, Chen J: Purification and properties of the apple fruit ethylene-forming enzyme. Biochemistry 32: 7445–7450 (1993).

    Article  PubMed  CAS  Google Scholar 

  88. Raghothama KG, Lawton KA, Goldsbrough PB, Woodson WR: Characterization of an ethylene-regulated flower senescence-related gene from carnation. Plant Mol Biol 17: 61–71 (1991).

    Article  PubMed  CAS  Google Scholar 

  89. Raz V, Fluhr R: Calcium requirement for ethylene-dependent responses. Plant Cell 4: 1123–1130 (1992).

    PubMed  CAS  Google Scholar 

  90. Raz V, Fluhr R: Ethylene signal is transduced via protein phosphorylation events in plants. Plant Cell 5: 523–530 (1993).

    PubMed  CAS  Google Scholar 

  91. Rick CM, Butler L: Phytogenetics of the tomato. Adv Genet 8: 267–382 (1956).

    Article  Google Scholar 

  92. Roby D, Broglie K, Gaynor J, Broglie R: Regulation of a chitinase gene promoter by ethylene and elicitors in bean protoplasts. Plant Physiol 97: 433–439 (1991).

    Article  PubMed  CAS  Google Scholar 

  93. Rodrigues-Pousada RA, Rycke RD, Dedonder A, Caeneghem WV, Engler G, Van Montagu M, Van Der Straeten D: The Arabidopsis 1-aminocyclopropane-l-carboxylate synthase gene 1 is expressed during early development. Plant Cell 5: 897–911 (1993).

    PubMed  CAS  Google Scholar 

  94. Rombaldi C, Petitprez M, Cleyet-Marel JC, Rouge P, Latche A, Pech JC, Lelievre JM: Immunocytolocalisation of ACC oxidase in tomato fruits. In: Pech JC, Latche A, Balague C (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene, pp. 96–97. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).

    Google Scholar 

  95. Ross AF: Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329–339 (1961).

    Article  PubMed  CAS  Google Scholar 

  96. Rottmann WH, Peter GF, Oeller PW, Keller JA, Shen NF, Nagy BP, Taylor LP, Campbell AD, Theologis A: 1-Aminocyclopropane-l-carboxylate synthase in tomato is encoded by a multigene family whose transcription is induced during fruit and floral senescence. J Mol Biol 222: 937–961 (1991).

    Article  PubMed  CAS  Google Scholar 

  97. Sato T, Oeller PW, Theologis A: The 1-aminocyclopropane-1-carboxylate synthase of Cucurbita. J Biol Chem 266: 3752–3759 (1990).

    Google Scholar 

  98. Sato T, Theologis A: Cloning the mRNA encoding 1-aminocyclopropane-l-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci USA 86: 6621–6625 (1989).

    Article  PubMed  CAS  Google Scholar 

  99. Satoh S, Mori H, Imaseki H: Monomeric and dimeric forms and the mechanism-based inactivation of 1-ami-nocyclopropane-1-carboxylate synthase. Plant Cell Physiol 34: 753–760 (1993).

    CAS  Google Scholar 

  100. Slater A, Maunders MJ, Edwards K, Schuch W, Grierson D: Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol 5: 137–147 (1985).

    Article  CAS  Google Scholar 

  101. Sonnhammer ELL, Kahn D: Modular arrangement of proteins as inferred from analysis of homology. Prot Sci 3: 482–492 (1994).

    Article  CAS  Google Scholar 

  102. Spanu P, Reinhardt D, Boiler T: Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J 10: 2007–2013 (1991).

    PubMed  CAS  Google Scholar 

  103. Stock JB, Ninfa AJ, Stock AM: Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 53: 450–490 (1989).

    PubMed  CAS  Google Scholar 

  104. Stout V, Gottesman S: RcsB and RcsC: a two-component regulator of capsule synthesis in Escherichia coli. J Bact 172: 659–669 (1990).

    PubMed  CAS  Google Scholar 

  105. Sung M, Tanizawa K, Tanaka H, Kuramitsu S, Kagamiyama H, Hirotsu K, Okamoto A, Higuchi T, Soda K: Thermostable aspartate aminotransferase from a thermophilic bacillus species: gene cloning, sequence determination, and preliminary X-ray characterization. J Biol Chem 266: 2567–2572 (1991).

    PubMed  CAS  Google Scholar 

  106. Tang X, Wang H, Brandt AS, Woodson WR: Organization and structure of the 1-aminocyclopropane-l-carboxylate oxidase gene family from Petunia hybrida. Plant Mol Biol 23: 1151–1164 (1993).

    Article  PubMed  CAS  Google Scholar 

  107. Theologis A: One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70: 181–184 (1992).

    Article  PubMed  CAS  Google Scholar 

  108. Theologis A: What a gas! Curr Biol 3: 369–371 (1993).

    Article  CAS  Google Scholar 

  109. Theologis A: Control of ripening. Curr Opin Biotechnol 5: 152–157 (1994).

    Article  CAS  Google Scholar 

  110. Theologis A, Huynh TV, Davis RW: Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183: 53–68 (1985).

    Article  PubMed  CAS  Google Scholar 

  111. Theologis A, Oeller PW, Wong LM, Rottmann WH, Gantz DM: Use of a tomato mutant constructed with reverse genetics to study fruit ripening, a complex development process. Devel Genet 14: 282–295 (1993).

    Article  CAS  Google Scholar 

  112. Uhl MA, Miller JF: Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA 91: 1163–1167(1994).

    Article  PubMed  CAS  Google Scholar 

  113. Van der Straeten D, Djudzman A, Vancaeneghem W, Smalle J, Van Montagu M: Genetic and physiological analysis of a new locus in Arabidopsis that confers resistance to 1-aminocyclopropane-l-carboxylic acid and ethylene and specifically affects the ethylene signal-transduction pathway. Plant Physiol 102: 401–408 (1993).

    Google Scholar 

  114. Van Der Straeten D, Rodrigues-Pousada RA, ViUarroel R, Hanley S, Van Montagu M: Cloning, genetic mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-l-carboxylate synthase. Proc Natl Acad Sci USA 89: 9969–9973 (1992).

    Article  PubMed  Google Scholar 

  115. Van Der Straeten D, Van Wiemeersch L, Goodman HM, Van Montagu M: Purification and partial characterization of 1-aminocyclopropane-l-carboxylate synthase from tomato pericarp. Eur J Biochem 182: 639–647 (1989).

    Article  PubMed  Google Scholar 

  116. Van Der Straeten D, Wiemeersch LV, Goodman HM, Van Montagu M: Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-l-carboxylate synthase in tomato. Proc Natl Acad Sci USA 87: 4859–4863 (1990).

    Article  PubMed  Google Scholar 

  117. Van Doorsselaere J, Gielen J, Van Montagu M, Inze D: A cDNA encoding S-adenosyl-L-methionine synthetase from poplar. Plant Physiol 102: 1365–1366 (1993).

    Article  PubMed  Google Scholar 

  118. Ververidis P, John P: Complete recovery in vitro of ethylene-forming enzyme activity. Phytochemistry 30: 725–727 (1991).

    Article  CAS  Google Scholar 

  119. Wang H, Woodson WR: A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis. Plant Physiol 96: 1000–1001 (1991).

    Article  PubMed  CAS  Google Scholar 

  120. Wang H, Woodson WR: Nucleotide sequence of a cDNA encoding the ethylene-forming enzyme from petunia corollas. Plant Physiol 100: 535–536 (1992).

    Article  PubMed  CAS  Google Scholar 

  121. Wilson ID, Zhu YL, Burmeister DM, Dilley DR: Apple ripening-related cDNA clone PAP4 confers ethylene-forming ability in transformed Saccharomyces cerevisiae. Plant Physiol 102: 783–788 (1993).

    Article  PubMed  CAS  Google Scholar 

  122. Yang SF, Dong JG: Recent progress in research of ethylene biosynthesis. Bot Bull Acad Sin 34: 89–101 (1993).

    CAS  Google Scholar 

  123. Yang SF, Hoffman NE: Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35: 155–189(1984).

    Article  CAS  Google Scholar 

  124. Yip W-K, Dong J-G, Kenny JW, Thompson GA, Yang SF: Characterization and sequencing of the active site of 1-aminocyclopropane-l-carboxylate synthase. Proc Natl Acad Sci USA 87: 7930–7934 (1990).

    Article  PubMed  CAS  Google Scholar 

  125. Yip W-K, Moore T, Yang SF: Differential accumulation of transcripts for four tomato 1-aminocyclopropane-l-carboxylate synthase homologs under various conditions. Proc Natl Acad Sci USA 89: 2475–2479 (1992).

    Article  PubMed  CAS  Google Scholar 

  126. Zarembinski TI, Theologis A: Anaerobiosis and plant growth hormones induce two genes encoding 1-aminocy-clopropane-1-carboxylate synthase in rice (Oryza sativa L.). Mol Biol Cell 4: 363–373 (1993).

    PubMed  CAS  Google Scholar 

  127. Jansonius JN, Eichele G, Ford GC, Picot D, Thaller C, Vincent GC: Spatial structure of mitochondrial aspartate aminotransferase. In: Christen P, Metzler DE (eds) Transaminases, pp. 109–138. John Wiley and Sons, New York (1985).

    Google Scholar 

  128. Rost B, Sander C: Improved prediction of protein secondary structure by use of sequence profiles and neural networks. Proc Natl Acad Sci USA 90: 7558–7562 (1993).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Palme

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zarembinski, T.I., Theologis, A. (1994). Ethylene biosynthesis and action: a case of conservation. In: Palme, K. (eds) Signals and Signal Transduction Pathways in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0239-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0239-1_19

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4107-2

  • Online ISBN: 978-94-011-0239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics