Skip to main content

Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes

  • Chapter
Book cover Signals and Signal Transduction Pathways in Plants

Abstract

All living organisms react to signals from their environment such as light, temperature, sound and chemical substances in order to survive and adapt to their surroundings. In multicellular organisms communication between cells is necessary to regulate growth and differentiation [3]. Neighbouring cells can communicate with each other by direct cell-cell contact through plasma-membrane-bound signalling molecules or through the formation of gap junctions [176]. Cells are able to communicate with other cells some distance away through secretion of chemical signals. The secreted signals can be soluble molecules such as most hormones and neurotransmitters; they bind to receptors on the cell surface of target cells. Hydrophobic signal molecules such as the steroid and thyroid hormones are able to pass the lipid bilayer of the plasma membrane and bind to specific proteins inside the cell [76].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

C:

catalytic subunit PKA

EGF:

epidermal growth factor

FGF:

fibroblast growth factor

GRK:

G-protein coupled receptor kinase

InsP3 :

inositol 1,4,5-trisphosphate

LAR:

leucocyte common antigen-related

LCA:

leucocyte common antigen

MAP kinase:

mitogen-activated protein kinase

PDE:

phosphodiesterase

PDGF:

platelet-derived growth factor

PKA:

cAMP-dependent protein kinase

PKC:

protein kinase C

PKG:

cGMP-dependent protein kinase

PLA2 :

phospholipase A2

PLC:

phospholipase C

PLD:

phospholipase D

PtdInsP2 :

phosphatidylinositol 4,5-bisphosphate

PTP:

protein tyrosine phosphatase

R:

regulatory subunit PKA

SH domain:

src homology domain

TCR:

T cell receptor

TPA:

12-O-tetradecanoylphorbol-13-acetate

References

  1. Abe K, Kusakabe Y, Tanemura K, Emori Y, Arai S: Primary structure and cell-type specific expression of a gustatory G protein-coupled receptor related to olfactory receptors. J Biol Chem 268: 12033–12039 (1993).

    PubMed  CAS  Google Scholar 

  2. Ahn NG, Seger R, Bratlien RL, Diltz CD, Tonks NK, Krebs EG: Multiple components in an epidermal growth factor-stimulated protein kinase cascade — in vitro activation of a myelin basic protein/microtubule-associated protein 2 kinase. J Biol Chem 266: 4220–4227 (1991).

    PubMed  CAS  Google Scholar 

  3. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD: Molecular Biology of the Cell, pp. 681–726. Garland Publishing, New York/London (1989).

    Google Scholar 

  4. Anderson D, Koch CA, Grey L, Ellis C, Moran MF, Pawson T: Binding of SH2 domains of phospholipase Cγ 1, GAP, and Src to activated growth factor receptors. Science 250: 979–982 (1990).

    PubMed  CAS  Google Scholar 

  5. Anjard C, Pinaud S, Kay RR, Reymond CD: Over-expression of DdPK2 protein kinase causes rapid development and affects the intracellular cAMP pathway of Dictyostelium discoideum. Development 115: 785–790 (1992).

    PubMed  CAS  Google Scholar 

  6. Anjard C, Etchebehere L, Pinaud S, Veron M, Reymond CD: An unusual catalytic subunit for the cAMP-dependent protein kinase of Dictyostelium discoideum. Biochemistry 32: 9532–9538 (1993).

    PubMed  CAS  Google Scholar 

  7. Aroian RV, Koga M, Mendel JE, Ohshima Y, Sternberg PW: The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a tyrosine kinase of the EGF receptor subfamily. Nature 348: 693–699 (1990).

    PubMed  CAS  Google Scholar 

  8. Asaoka Y, Oka M, Yoshida K, Nishizuka Y: Metabolic rate of membrane-permeant diacylglycerol and its relation to human resting T-lymphocyte activation. Proc Natl Acad Sci USA 88: 8681–8685 (1991).

    PubMed  CAS  Google Scholar 

  9. Asaoka Y, Nakamura S, Yoshida K, Nishizuka Y: Protein kinase C, calcium and phospholipid degradation. Trends Biochem Sci 17: 414–417 (1992).

    PubMed  CAS  Google Scholar 

  10. Atkinson RA, Saudek V, Huggins JP, Pelton JT: 1H NMR and circular dichroism studies of the N-terminal domain of cyclic GMP dependent protein kinase: a leucine/isoleucine zipper. Biochemistry 30: 9387–9395 (1991).

    PubMed  CAS  Google Scholar 

  11. Bakalyar HA, Reed RR: Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250: 1403–1405 (1990).

    PubMed  CAS  Google Scholar 

  12. Barnea G, Grumet M, Sap J, Margolis RU, Schlessinger J: Close similarity between receptor-linked tyrosine phosphatase and rat brain proteoglycan. Cell 76: 205 (1993).

    Google Scholar 

  13. Bar-Sagi D, Rotin D, Batzer A, Mandiyan V, Schlessinger J: SH3 domains direct cellular localization of signalling molecules. Cell 74: 83–91 (1993).

    PubMed  CAS  Google Scholar 

  14. Beebe SJ, Øyen O, Sandberg M, Frøysa A, Hansson V, Jahnsen T: Molecular cloning of a tissue-specific protein kinase (Cγ) from human testis — representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol Endocrinol 4: 465–474 (1990).

    PubMed  CAS  Google Scholar 

  15. Bennet CF, Balcarek JM, Varrichio A, Crooke ST: Molecular cloning and complete amino-acid sequence of form-I phosphoinositide-specific phospholipase C. Nature 334: 268–270 (1988).

    Google Scholar 

  16. Berchtold H, Reshetnikova L, Reiser COA, Schirmer NK, Sprinzi M, Hilgenfeld R: Crystal structure of active elongation factor Tu reveals major domain rearrangements. Nature 365: 126–132 (1993).

    PubMed  CAS  Google Scholar 

  17. Bernstein G, Blank JL, Smrcka AV, Higashijima T, Sternweis PC, Exton JH, Ross EM: Reconstitution of agonist-stimulated phosphatidylinositol 4,5-bisphos-phate hydrolysis using purified ml muscarinic receptor, Gq/11, and phospholipase Cβ 1. J Biol Chem 267: 8081–8088 (1992).

    Google Scholar 

  18. Bernstein G, Blank JL, Jhon DK, Exton JH, Rhee SG, Ross EM: Phospholipase Cβ l is a GTPase-activating protein for Gq/11, its physiologic regulator. Cell 70: 411–418(1992).

    Google Scholar 

  19. Berridge MJ, Irvine RF: Inositol phosphates and cell signalling. Nature 341: 197–205 (1989).

    PubMed  CAS  Google Scholar 

  20. Berridge MJ: Inositol trisphosphate and calcium signalling. Nature 361: 315–325 (1993).

    PubMed  CAS  Google Scholar 

  21. Birnbaumer L: Receptor-to-effector signalling through G proteins: roles for βγ dimers as well as α subunits. Cell 71: 1069–1072(1992).

    PubMed  CAS  Google Scholar 

  22. Blank JL, Ross AH, Exton JH: Purification and characterization of two G-proteins that activate the β l isozyme of phosphoinositide-specific phospholipase C. J Biol Chem 266: 18206–18216 (1991).

    PubMed  CAS  Google Scholar 

  23. Bloomquist BT, Shortridge RD, Schneuwly S, Per-dew M, Montell C, Steiler H, Rubin G, Pak WL: Isolation of a putative phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell 54: 723–733 (1988).

    PubMed  CAS  Google Scholar 

  24. Boguski MS, McCormick F: Proteins regulating Ras and its relatives. Nature 366: 643–654 (1993).

    PubMed  CAS  Google Scholar 

  25. Boman AL, Taylor TC, Melançon P, Wilson KL: A role for ADP-ribosylation factor in nuclear vesicle dynamics. Nature 358: 512–51 (1992).

    PubMed  CAS  Google Scholar 

  26. Bonfini L, Karlovich CA, Dasgupta C, Banerjee U: The Son of sevenless gene product: a putative activator of Ras. Science 25: 603–606 (1992).

    Google Scholar 

  27. Boulton TG, Nye SH, Robbins DJ, Ip NY, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MH, Yancopoulos GD: ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65: 663–675 (1991).

    PubMed  CAS  Google Scholar 

  28. Bourne HR, Sanders DA, McCormick F: The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127 (1991).

    PubMed  CAS  Google Scholar 

  29. Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, Wigler M: The Saccharomyces cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 48: 789–799 (1987).

    PubMed  CAS  Google Scholar 

  30. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, Sun A, Hediger MA, Lytton J, Hebert SC: Cloning and characterization of an extracellular Ca2+ -sensing receptor from bovine parathyroid. Nature 366: 575–580 (1993).

    PubMed  CAS  Google Scholar 

  31. Brown HA, Gutowski S, Moomaw CR, Slaughter C, Sternweis PC: ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75: 1137–1144 (1993).

    PubMed  CAS  Google Scholar 

  32. Buck L, Axel R: A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65: 175–187 (1991).

    PubMed  CAS  Google Scholar 

  33. Burkholder AC, Hartwell LH: The yeast α-factor receptor; structural properties deduced from the sequence of the STE2 gene. Nucl Acids Res 13: 8463–8475 (1985).

    PubMed  CAS  Google Scholar 

  34. Bürki E, Anjard C, Scholder JC, Reymond CD: Isolation of two genes encoding putative protein kinases regulated during Dictyostelium discoideum development. Gene 102: 57–65 (1991).

    PubMed  Google Scholar 

  35. Camonis JH, Kakeline M, Bernard G, Garreau H, Boy-Marcotte E, Jacquet M: Characterization, cloning and sequence analysis of the CDC25 gene which controls the cyclic AMP level of Saccharomyces cerevisiae. EMBO J 5: 375–380 (1986).

    PubMed  CAS  Google Scholar 

  36. Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH, Gierschik P: Stimulation of phospholipase C by guanine-nucleotide-binding protein βγ subunits. Eur J Biochem 206: 821–831 (1992).

    PubMed  CAS  Google Scholar 

  37. Cannon JF, Tatchell K: Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol 7: 2653–2663 (1987).

    PubMed  CAS  Google Scholar 

  38. Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S: Oncogenes and signal transduction. Cell 64: 281–302 (1991).

    PubMed  CAS  Google Scholar 

  39. Carozzi A, Camps M, Gierschik P, Parker PJ: Activation of phosphatidylinositol lipid-specific phospholipase C β3 by G-protein βγ subunits. FEBS Lett 315: 340–342 (1993).

    PubMed  CAS  Google Scholar 

  40. Chang MS, Lowe DG, Lewis M, Hellmiss R, Chen E, Goeddel DV: Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature 341: 68–72 (1989).

    PubMed  CAS  Google Scholar 

  41. Charbonneau H, Tonks NK, Walsh KA, Fischer EH: The leukocyte common antigen (CD45): a putative receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci USA 85: 7182–7186 (1988).

    PubMed  CAS  Google Scholar 

  42. Charbonneau H, Tonks NK, Kumar S, Diltz CD, Harrylock M, Cool DE, Kregs EG, Fischer EH, Walsh KA: Human placenta protein-tyrosine-phosphatase: amino acid sequence and relationship to a family of receptor-like proteins. Proc Natl Acad Sci USA 86: 5252–5256 (1989).

    PubMed  CAS  Google Scholar 

  43. Chardin P, Camonis J, Gale WL, Van Aelst L, Schlessinger J, Wigler MH, Bar-Sagi D: Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 260: 1338–1343 (1993).

    PubMed  CAS  Google Scholar 

  44. Chinkers M, Garbers DL: The protein kinase domain of the ANP receptor is required for signalling. Science 245: 1392–1394 (1989).

    PubMed  CAS  Google Scholar 

  45. Chinkers M, Garbers DL, Chang MS, Lowe DG, Chin H, Goeddel DV, Schulz S: A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature 338: 78–83 (1989).

    PubMed  CAS  Google Scholar 

  46. Chinkers M, Garbers DL: Signal transduction by guanylyl cyclases. Annu Rev Biochem 60: 553–575 (1991).

    PubMed  CAS  Google Scholar 

  47. Choi EJ, Xia Z, Storm DR: Stimulation of the type III olfactory adenylyl cyclase by calcium and calmodulin. Biochemistry 31: 6492–6498 (1992).

    PubMed  CAS  Google Scholar 

  48. Choi EJ, Xia Z, Villacres EC, Storm DR: The regulatory diversity of the mammalian adenylyl cyclases. Curr Opin Cell Biol 5: 269–273 (1993).

    PubMed  CAS  Google Scholar 

  49. Cifuentes ME, Honkanen L, Rebecchi MJ: Proteolytic fragments of phosphoinositide-specific phospholipase Cδ 1 — catalytic and membrane binding properties. J Biol Chem 268: 11586–11593 (1993).

    PubMed  CAS  Google Scholar 

  50. Clark JD, Lin LL, Kriz RW, Ramesha CS, Sultzman LA, Lin AY, Milona N, Knopf JL: A novel arachidonic acid-selective cytosolic PLA2 contains a Ca2+ -dependent translocation domain with homology to PKC and GAP. Cell 65: 1043–1051 (1991).

    PubMed  CAS  Google Scholar 

  51. Clark SG, Stern MJ, Horvitz HR: C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature 356: 340–344 (1992).

    PubMed  CAS  Google Scholar 

  52. Cockroft S: G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Bio-phys Acta 1113: 135–160 (1992).

    Google Scholar 

  53. Cockroft S, Thomas GMH: Inositol-lipid-specific phospholipase C isoenzymes and their differential regulation by receptors. Biochem J 288: 1–14 (1992).

    Google Scholar 

  54. Cockroft S, Thomas GMH, Fensome A, Geny B, Cunningham E, Gout I, Hues I, Totty NF, Truong O, Hsuan JJ: Phospholipase D: a downstream effector of ARF in granulocytes. Science 263: 523–526 (1994).

    Google Scholar 

  55. Conklin BR, Bourne HR: Structural elements of Galpha subunits that interact with G protein βγ, receptors and effectors. Cell 73: 631–641 (1993).

    PubMed  CAS  Google Scholar 

  56. Crews CM, Alessandrini A, Erikson RL: The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478–480 (1992).

    PubMed  CAS  Google Scholar 

  57. DeFeo-Jones D, Scolnick EM, Koller R, Dhar R: Ras-related gene sequences identified and isolated from Saccharomyces cerevisiae. Nature 306: 707–709 (1983).

    PubMed  CAS  Google Scholar 

  58. De Gunzburg J, Veron M: A cAMP-dependent protein kinase is present in differentiating Dictyostelium discoideum cells. EMBO J 1: 1063–1068 (1982).

    PubMed  CAS  Google Scholar 

  59. De Gunzburg J, Part D, Guiso N, Veron M: An unusual adenosine 3′ 5′ -phosphate dependent protein kinase from Dictyostelium discoideum. Biochemistry 23: 3805–3812 (1984).

    Google Scholar 

  60. Dekker LV, Parker PJ: Protein kinase C — a question of specificity. Trends Biochem Sci 19: 73–77 (1994).

    PubMed  CAS  Google Scholar 

  61. Dent P, Haser W, Haystead TAJ, Vincent LA, Robers TM, Sturgill TW: Activation of mitogen-activated protein kinase kinase by v-Raf in NIH 3T3 cells and in vitro. Science 257: 1404–1407 (1992).

    PubMed  CAS  Google Scholar 

  62. Desai DM, Sap J, Schlessinger J, Weiss A: Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73: 541–554 (1993).

    PubMed  CAS  Google Scholar 

  63. Devreotes P: Dictyostelium discoideum: a model system for cell-cell interactions and development. Science 245: 1054–1058 (1989).

    PubMed  CAS  Google Scholar 

  64. de Wit RJW, Arents JC, van Driel R: Ligand binding properties of the cytoplasmic cAMP-binding protein of Dictyostelium discoideum. FEBS Lett 145: 150–154 (1982).

    Google Scholar 

  65. Dhallan RS, Yau K, Schrader KA, Reed RR: Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347: 184–187 (1990).

    PubMed  CAS  Google Scholar 

  66. Dietzel C, Kurjan J: The yeast SCG1 gene: a Gα-like protein implicated in the a and α-factor response pathway. Cell 50: 1001–1010 (1987).

    PubMed  CAS  Google Scholar 

  67. Divecha N, Banfić H, Irvine RF: The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-1) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10: 3207–3214 (1991).

    PubMed  CAS  Google Scholar 

  68. Divecha N, Banfic H, Irvine RF: Inositides and the nucleus and inositides in the nucleus. Cell 74: 405–407 (1993).

    PubMed  CAS  Google Scholar 

  69. Divecha N, Rhee SG, Letcher AJ, Irvine RF: Phosphoi-nositide signalling enzymes in rat liver nuclei: phosphoi-nositidase C isoform β1 is specifically, but not predominantly, located in the nucleus. Biochem J 289: 617–620 (1993).

    PubMed  CAS  Google Scholar 

  70. Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L: Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251: 915–918 (1991).

    PubMed  CAS  Google Scholar 

  71. Drayer AL, van Haastert PJM: Molecular cloning and expression of a phosphoinositide-specific phospholipase C of Dictyostelium discoideum. J Biol Chem 267: 18387–18392 (1992).

    PubMed  CAS  Google Scholar 

  72. Drayer AL, van der Kaay J, Mayr GW, van Haastert PJM: Role of phospholipase C in Dictyostelium: formation of inositol 1,4,5-trisphosphate and normal development in cells lacking phospholipase C activity. EMBO J 13: 1601–1609 (1994).

    PubMed  CAS  Google Scholar 

  73. Emori Y, Homma Y, Sorimachi H, Kawasaki H, Nakanisho O, Suzuki K, Takenawa TA: A second type of rat phosphoinositide-specific phospholipase C containing a src-related sequence not essential for phosphoinositide-hydrolyzing activity. J Biol Chem 264: 21885–21890 (1989).

    PubMed  CAS  Google Scholar 

  74. Errede B, Levin DE: A conserved kinase cascade for MAP kinase activation in yeast. Curr Opin Cell Biol 5: 254–260 (1993).

    PubMed  CAS  Google Scholar 

  75. Errede B, Gartner A, Zhou Z, Nasmyth K, Ammer er G: Map kinase-related FUS3 from Saccharomyces cerevisiae is activated by Ste7 in vitro. Nature 362: 261–267 (1993).

    PubMed  CAS  Google Scholar 

  76. Evans RM: The steroid and thyroid hormone receptor superfamily. Science 240: 889–895 (1988).

    PubMed  CAS  Google Scholar 

  77. Exton JH: Signalling through phosphatidylcholine breakdown. J Biol Chem 265: 1–4 (1990).

    PubMed  CAS  Google Scholar 

  78. Fantl WJ, Escobedo JA, Martin GA, Turck CW, Cel Rosario M, McCormick F, Williams LT: Distinct phos-photyrosines on a growth factor receptor bind to specific molecules that mediate different signalling pathways. Cell 69: 413–423 (1992).

    PubMed  CAS  Google Scholar 

  79. Federman AD, Conklin BR, Schrader KA, Reed RR, Bourne HR: Hormonal stimulation of adenylyl cyclase through Gi-protein βγ subunits. Nature 356: 159–161 (1992).

    PubMed  CAS  Google Scholar 

  80. Feinstein PG, Schrader KA, Bakalyar HA, Tang WJ, Krupinski J, Gilman AG, Reed RR: Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci USA 88: 10173–10177 (1991).

    PubMed  CAS  Google Scholar 

  81. Feng GS, Hui CC, Pawson T: SH2-containing phos-photyrosine phosphatase as a target of protein-tyro sine kinases. Science 259: 1607–1607 (1993).

    PubMed  CAS  Google Scholar 

  82. Ferreira PA, Shortridge RD, Pak WL: Distinctive subtypes of bovine phospholipase C that have preferential expression in the retina and high homology to the norpA gene product of Drosophila. Proc Natl Acad Sci USA 90: 6042–6046 (1993).

    PubMed  CAS  Google Scholar 

  83. Ferris CD, Huganir RL, Supattapone S, Snyder SH: Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342: 87–89 (1989).

    PubMed  CAS  Google Scholar 

  84. Ferris CD, Huganir RL, Snyder SH: Calcium flux mediated by purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles is allosterically regulated by adenine nucleotides. Proc Natl Acad Sci USA 87: 2147–2151 (1990).

    PubMed  CAS  Google Scholar 

  85. Ferris CD, Cameron AM, Bredt DS, Huganir RL, Snyder SH: Autophosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 267: 7036–7041 (1992).

    PubMed  CAS  Google Scholar 

  86. Fino Silva I, Plasterk RH A: Characterization of a G-protein α-subunit gene from the nematode Caenorhabditis elegans. J Mol Biol 215: 483–487 (1990).

    PubMed  CAS  Google Scholar 

  87. Fischer EH, Charbonneau H, Tonks NK: Protein tyrosine phosphatases: a diverse family of intracellular and transmembrane enzymes. Science 253: 401–406 (1991).

    PubMed  CAS  Google Scholar 

  88. Flick JS, Thorner J: Genetic and biochemical characterization of a phosphatidylinositol-specific phospholipase C in Saccharomyces cerevisiae. Mol Cell Biol 13: 5861–5876 (1993).

    PubMed  CAS  Google Scholar 

  89. Freeman RM, Plutzky J, Neel BG: Identification of a human src homology 2-containing protein-tyrosine-phosphatase: a putative homolog of Drosophila corkscrew. Proc Natl Acad Sci USA 89: 11239–11243 (1992).

    PubMed  CAS  Google Scholar 

  90. Fukui Y, Kaziro Y: Molecular cloning and sequence analysis of a ras gene from Schizosaccharomyces pombe. EMBO J 4: 687–691 (1985).

    PubMed  CAS  Google Scholar 

  91. Furuichi T, Yoshikawa S, Niyawaki A, Wada K, Maeda N, Mikoshiba K: Primary structure and functional expression of the inositol 1,4,5-trisphosphate-binding protein P400. Nature 342: 32–38 (1989).

    PubMed  CAS  Google Scholar 

  92. Gao B, Gilman AG: Cloning and expression of a widely distributed (type IV) adenylyl cyclase. Proc Natl Acad Sci USA 88: 10178–10182 (1991).

    PubMed  CAS  Google Scholar 

  93. Garbers DL: Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 71: 1–4 (1992).

    PubMed  CAS  Google Scholar 

  94. Garritsen A, van Galen PJM, Simonds WF: The N-terminal coiled-coil domain of β is essential for γ association: a model for G-protein βγ subunit interaction. Proc Natl Acad Sci USA 90: 7706–7710 (1993).

    PubMed  CAS  Google Scholar 

  95. Gill DL: Receptor kinships revealed. Nature 342: 16–18 (1989).

    PubMed  CAS  Google Scholar 

  96. Grille H, Sharrocks AD, Shaw PE: Phosphorylation of transcription factor p62TCF by MAP kinase stimulates ternary complex formation at c-fos promotor. Nature 358: 414–417 (1992).

    Google Scholar 

  97. Giuili G, Scholl U, Bulle F, Guellaën G: Molecular cloning of the cDNAs coding for the two subunits of soluble guanylyl cyclase from human brain. FEBS Lett 304: 82–88 (1992).

    Google Scholar 

  98. Gould KL, Nurse P: Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342: 39–45 (1989).

    PubMed  CAS  Google Scholar 

  99. Greenfield C, Hils I, Waterfield MD, Federwisch W, Wollmer A, Blundell TL, McDonald N: EGF binding induces a conformational change in the external domain of its receptor. EMBO J 8: 4155–4124 (1989).

    Google Scholar 

  100. Grenningloh G, Rienitz A, Schmitt B, Methfessel C, Zensen M, Beyreuther K, Gundelfinger ED, Betz H: The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328: 215–220 (1987).

    PubMed  CAS  Google Scholar 

  101. Hadwiger JA, Wilkie TM, Stratmann M, Firtel RA: Identification of Dictyostelium Gα genes expressed during multicellular development. Proc Natl Acad Sci USA 88: 8213–8217 (1991).

    PubMed  CAS  Google Scholar 

  102. Hadwiger JA, Firtel RA: Analysis of Gα4, a G-protein subunit required for multicellular development in Dictyostelium. Genes Devel 6: 38–49 (1992).

    PubMed  CAS  Google Scholar 

  103. Hafen E, Basier K, Edstroem JE, Rubin GM: Seven-less, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236: 55–63 (1987).

    PubMed  CAS  Google Scholar 

  104. Haga K, Haga T: Activation by G protein βγ subunits of agonist- or light-dependent phosphorylation of muscarinic acetylcholine receptors and rhodopsin. J Biol Chem 267: 2222–2227 (1992).

    PubMed  CAS  Google Scholar 

  105. Hagen DC, McCaffrey G, Sprague Jr GF: Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci USA 83: 1418–1422 (1986).

    PubMed  CAS  Google Scholar 

  106. Hall A: Ras-related proteins. Curr Opin Cell Biol 5: 265–268 (1993).

    PubMed  CAS  Google Scholar 

  107. Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–51 (1988).

    PubMed  CAS  Google Scholar 

  108. Harteneck C, Koesling D, Söling A, Schultz G, Böhme E: Expression of soluble guanylyl cyclase — catalytic activity requires two enzyme subunits. FEBS Lett 272: 221–223 (1990).

    PubMed  CAS  Google Scholar 

  109. Harteneck C, Wedel B, Koesling D, Malkewitz J, Böhme E, Schultz G: Molecular cloning and expression of a new α-subunit of soluble guanylyl cyclase — interchange-ability of the α-subunits of the enzyme. FEBS Lett 292: 217–222 (1991).

    PubMed  CAS  Google Scholar 

  110. Hattori S, Fukuda M, Yamashita T, Nakamura S, Gotoh Y, Nishida E: Activation of mitogen-activated protein kinase and its activator by ras in intact cells and in a cell-free system. J Biol Chem 267: 20346–20351 (1992).

    PubMed  CAS  Google Scholar 

  111. Heldin CH, Ernlund A, Rorsman C, Rönnstrand L: Dimerization of the B-type platelet-derived growth factor receptors occurs after ligand binding and is closely associated with receptor kinase activation. J Biol Chem 264: 8905–8912 (1989).

    PubMed  CAS  Google Scholar 

  112. Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH: Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213: 899–929 (1990).

    PubMed  CAS  Google Scholar 

  113. Hepler JR, Gilman AG: G proteins. Trends Biochem Sci 17: 383–387 (1992).

    PubMed  CAS  Google Scholar 

  114. Hill TD, Dean NM, Mordan LJ, Lau AF, Kanemitsu MY, Boynton AL: PDGF-induced activation of phospholipase C is not required for induction of DNA synthesis. Science 248: 1660–1663 (1990).

    PubMed  CAS  Google Scholar 

  115. Hocevar BA, Fields AP: Selective translocation of βII-protein kinase C to the nucleus of human promyelocytic (HL60) leukemia cells. J Biol Chem 266: 28–33 (1991).

    PubMed  CAS  Google Scholar 

  116. Hofmann F, Dostmann W, Keilbach A, Landgraf W, Ruth P: Structure and physiological role of cGMP-dependent protein kinase. Biochim Biophys Acta 1135: 51–60(1992).

    PubMed  CAS  Google Scholar 

  117. House C, KempB: Protein kinase C contains a pseudosub strate prototope in its regulatory domain. Science 238: 1726–1728 (1987).

    PubMed  CAS  Google Scholar 

  118. Howard PK, Sefton BM, Firtel RA: Analysis of a spatially regulated phosphotyrosine phosphatase identifies tyrosine phosphorylation as a key regulatory pathway in Dictyostelium. Cell 71: 637–647 (1992).

    PubMed  CAS  Google Scholar 

  119. Hughes DA, Yamamoto M: Ras and signal transduction during sexual differentiation in the fission yeast Schizosaccharomyces pombe. In: Kurjan J, Taylor BL (eds) Signal Transduction: Prokaryotic and Simple Eu-karyotic Systems, pp. 123–146. Academic Press, New York (1993).

    Google Scholar 

  120. Hunter T: A thousand and one protein kinases. Cell 50: 823–829 (1987).

    PubMed  CAS  Google Scholar 

  121. Hurley JB, Dizhoor AM, Ray S, Stryer L: Recoverin’s role: conclusion withdrawn. Science 260: 740 (1993).

    PubMed  CAS  Google Scholar 

  122. Hurley JB: G proteins of Drosophila melanogaster. In: Kurjan J, Taylor BL (eds) Signal Transduction: Prokaryotic and Simple Eukaryotic Systems, pp. 377–389. Academic Press, New York (1993).

    Google Scholar 

  123. Isshiki T, Mochizuki N, Maeda T, Yamamoto M: Characterization of a fission yeast gene, gpa2, that encodes a Gα subunit involved in the monitoring of nutrition. Genes Devel 6: 2455–2462 (1992).

    PubMed  CAS  Google Scholar 

  124. Iino M, Endo M: Calcium-dependent immediate feedback control of inositol 1,4,5-trisphosphate-induced Ca2+ release. Nature 360: 76–78 (1992).

    PubMed  CAS  Google Scholar 

  125. Inagami T: Atrial natriuretic factor. J Biol Chem 264: 3043–3046 (1989).

    PubMed  CAS  Google Scholar 

  126. Inglese J, Freedman NJ, Koch WJ, Lefkowitz RJ: Structure and mechanism of the G protein-coupled receptor kinases. J Biol Chem 268: 23735–23738 (1993).

    PubMed  CAS  Google Scholar 

  127. Janssens PMW, de Jong CCC, Vink AA, van Haastert PJM: Regulatory properties of magnesium-dependent guanylate cyclase in Dictyostelium discoideum membranes. J Biol Chem 264: 4329–4335 (1989).

    PubMed  CAS  Google Scholar 

  128. Johnson KE, Cameron S, Toda T, Wigler M, Zoller MJ: Expression in Escherichia coli of BCY1, the regulatory subunit of cyclic AMP-dependent protein kinase from Saccharomyces cerevisiae — purification and characterization. J Biol Chem 262: 8636–8642 (1987).

    PubMed  CAS  Google Scholar 

  129. Johnson RL, Saxe CL, Gollop R, Kimmel AR, Devreotes PN: Identification and targeted gene disruption of cAR3, a cAMP receptor subtype expressed during multicellular stages of Dictyostelium development. Genes Devel 7: 273–282 (1992).

    Google Scholar 

  130. Jones DT, Reed RR: Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244: 790–795 (1989).

    PubMed  CAS  Google Scholar 

  131. Kahn RA, Yucel JK, MalhotraV: ARF signalling: a potential role for phospholipase D in membrane traffic. Cell 75: 1045–1048 (1993).

    PubMed  CAS  Google Scholar 

  132. Kalderon D, Rubin GM: cGMP-dependent protein kinase genes in Drosophila. J Biol Chem 264: 10738–10748 (1989).

    PubMed  CAS  Google Scholar 

  133. Katoaka T, Powers S, McGill C, Fasano O, Strathern J, Broach J, Wigler M: Genetic analysis of yeast RAS1 and RAS2 genes. Cell 37: 437–445 (1984).

    Google Scholar 

  134. Kataoka T, Broek D, Wigler M: DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Cell 43: 493–505 (1985).

    PubMed  CAS  Google Scholar 

  135. Katsushika S, Chen L, Kawabe J, Nilakantan R, Halnon NJ, Homey CJ, Ishikawa Y: Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci USA 89: 8744–8778 (1992).

    Google Scholar 

  136. Kaupp UB, Niidome T, Tanabe T, Terada S, Bonigk W, et al.: Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 342: 762–766 (1989).

    PubMed  CAS  Google Scholar 

  137. Kawamura S: Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin. Nature 362: 855–857 (1993).

    PubMed  CAS  Google Scholar 

  138. Kazlauskas A, Cooper JA: Autophosphorylation of the PDGF receptor in the kinase insert region regulates interactions with cell proteins. Cell 58: 1121–1132 (1989).

    PubMed  CAS  Google Scholar 

  139. Kazlauskas A, Kashishian A, Cooper JA, Valius M: GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor β subunit. Mol Cell Biol 12: 2534–2544 (1992).

    PubMed  CAS  Google Scholar 

  140. Kazlauskas A, Feng GS, Pawson T, Valius M: The 64 kD protein that associates with the PDGF receptor subunit via tyrosine 1009 is the SH2 containing phos-photyrosine phosphatase Syp. Proc Natl Acad Sci USA 90: 6939–6942 (1993).

    PubMed  CAS  Google Scholar 

  141. Kesbeke F, Snaar-Jagalska BE, van Haastert PJM: Signal transduction in Dictyostelium fgdA mutants with a defective interaction between surface cAMP receptor and a GTP-binding regulatory protein. J Cell Biol 197: 521–528 (1988).

    Google Scholar 

  142. Kitamura K, Shimoda C: The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein. EMBO J 10: 3743–3751 (1991).

    PubMed  CAS  Google Scholar 

  143. Klein PS, Sun TJ, Saxe CL, Kimmel AR, Johnson RJ, Devreotes PN: A chemoattractant receptor controls development in Dictyostelium discoideum. Science 241: 1467–1472 (1988).

    PubMed  CAS  Google Scholar 

  144. Klump S, Kleefeld G, Schultz JE: Calcium/calmodulin-regulated guanylate cyclase of the excitable ciliary membrane from Paramecium. J Biol Chem 258: 12455–12549 (1983).

    Google Scholar 

  145. Knighton DR, Zheng J, Ten Eyck LF, Ashford VA, Xuong N, Taylor SS, Sowadski JM: Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 254: 407–414 (1991).

    Google Scholar 

  146. Knighton DR, Zheng J, Ten Eyck LF, Xyong N, Taylor SS, Sowadski JM: Structure of a peptide inhibitor bound to the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253: 414–420 (1991).

    PubMed  CAS  Google Scholar 

  147. Koch CA, Anderson D, Moran MF, Ellis C, Pawson T: SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling molecules. Science 252: 668–674 (1991).

    PubMed  CAS  Google Scholar 

  148. Koide H, Ogita K, Kikkawa U, Nishizuka Y: Isolation and characterization of the ε subspecies of protein kinase C from rat brain. Proc Natl Acad Sci USA 89: 1149–1153 (1992).

    PubMed  CAS  Google Scholar 

  149. Koch W, Heidecker G, Kochs G, et al.: Protein kinase C α activates RAF-1 by direct phosphorylation. Nature 364: 249–252 (1993).

    Google Scholar 

  150. Koller KJ, De Sauvage FJ, Lowe DG, Goeddel DV: Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol 12: 2581–2590 (1992).

    PubMed  CAS  Google Scholar 

  151. Koretzky GA, Picus J, Thomas ML, Weiss A: Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidylinositol pathway. Nature 346: 66–68 (1990).

    PubMed  CAS  Google Scholar 

  152. Koretzky GA, Picus J, Schultz T, Weiss A: Tyrosine phosphatase CD45 is required for T-cell antigen receptor and CD2-mediated activation of a protein tyrosine kinase and interleukin 2 production. Proc Natl Acad Sci USA 88: 2037–2041 (1991).

    PubMed  CAS  Google Scholar 

  153. Krueger NX, Streuli M, Saito H: Structural diversity and evolution of human receptor-like protein tyrosine phosphatases. EMBO J 9: 3241–3252 (1990).

    PubMed  CAS  Google Scholar 

  154. Krupinski J, Coussen F, Bakalyar HA, Tang WJ, Feinstein PG, Orth K, Slaughter C, et al.: Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science 244: 1558–1564 (1989).

    PubMed  CAS  Google Scholar 

  155. Kumagai A, Pupillo M, Gundersen R, Miake-Lye R, Devreotes PN, Firtel RA: Regulation and function of Gα protein subunits in Dictyostelium. Cell 57: 265–275 (1989).

    PubMed  CAS  Google Scholar 

  156. Kume S, Muto A, Aruga J, Nakagawa T, Michikawa Y, Furuichi T, Nakade S, Okano H, Mikoshiba K: The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Cell 73: 555–570 (1993).

    PubMed  CAS  Google Scholar 

  157. Kyriakis JM, App H, Zhang X, Banerjee P, Brautigan DL, Rapp UR, Avruch J: Raf-1 activates MAP kinase-kinase. Nature 358: 417–421 (1992).

    PubMed  CAS  Google Scholar 

  158. Labib K, Nurse P: Bring on the phosphatases. Curr Biol 3: 164–166 (1993).

    PubMed  CAS  Google Scholar 

  159. Lambrecht HG, Koch KW: A 26 kD calcium binding protein from bovine rod outer segments as modulator of photoreceptor guanylate cyclase. EMBO J 10: 793–798 (1991).

    PubMed  CAS  Google Scholar 

  160. Lange-Carter Ca, Pleiman CM, Gardener AM, Blumer KJ, Johnson GL: A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260: 315–319(1993).

    Google Scholar 

  161. Langosch D, Thomas L, Betz H: Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci USA 85: 7394–7398 (1988).

    PubMed  CAS  Google Scholar 

  162. Leach KL, Ruff VA, Jarpe MB, Adams LD, Fabbro D, Raben DM: α-Thrombin stimulates nuclear diglyceride levels and differential nuclear localization of protein kinase C isozymes in IIC9 cells. J Biol Chem 267: 21816–21822 (1992).

    PubMed  CAS  Google Scholar 

  163. Leberer E, Dignard D, Harcus D, Thomas DY, Whiteway M: The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein βγ subunits to downstream signalling components. EMBO J: 11: 4815–4824 (1992).

    PubMed  CAS  Google Scholar 

  164. Lee CH, Park D, Wu D, Rhee SG, Simon MI: Members of the Gq α subunit gene family activate phospholipase C-β isozymes. J Biol Chem 267: 16044–16047 (1992).

    PubMed  CAS  Google Scholar 

  165. Lefkowitz RJ: Protein-coupled receptor kinases. Cell 74: 409–412 (1993).

    PubMed  CAS  Google Scholar 

  166. Lefkowitz RJ, Caron MG: Adrenergic receptors — models for the study of receptors coupled to guanine nucleotide regulatory proteins. J Biol Chem 263: 4993–4996 (1988).

    PubMed  CAS  Google Scholar 

  167. Leichtling BH, Spitz E, Rickenberg HV: A cAMP-binding protein from Dictyostelium discoideum regulates mammalian protein kinase. Biochem Biophys Res Common Biophys 100: 515–522 (1981).

    CAS  Google Scholar 

  168. Levin DR, Fields FO, Kuniswawa R, Bishop JM, Thorner J: A candidate protein kinase C gene, PKC1, is required for the S. cerevisiae cell cycle. Cell 62: 213–224 (1990).

    PubMed  CAS  Google Scholar 

  169. Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR: The Drosophila learning and memory gene rutabaga encodes a Ca2+ /calmodulin-responsive adenylyl-cyclase. Cell 68: 479–489 (1992).

    PubMed  CAS  Google Scholar 

  170. Lerea CL, Somers DE, Hurley JB, Klock IB, Bunt-Milam AH: Identification of specific transducin α subunits in retinal rod and cone photoreceptors. Science 234: 77–80 (1986).

    PubMed  CAS  Google Scholar 

  171. Lilly P, Wu L, Welker DL, Devreotes PNA: G-protein β subunit is essential for Dictyostelium development. Genes Devel 7: 986–995 (1993).

    PubMed  CAS  Google Scholar 

  172. Lincoln TM, Thompson M, Cornwell TL: Purification and characterization of two forms of cyclic GMP-dependent protein kinase from bovine aorta. J Biol Chem 263: 17632–17637 (1988).

    PubMed  CAS  Google Scholar 

  173. Liscovitch M: Crosstalk among multiple signal-activated phospholipases. Trends Biochem Sci 17: 393–399 (1992).

    PubMed  CAS  Google Scholar 

  174. Liyanage M, Frith D, Livneh E, Stabel S: Protein kinase C group B members PKC-δ, -ε, -ζ, and PKC-L(η) — comparison of properties of recombinant protein in vitro and in vivo. Biochem J 283: 781–787 (1992).

    PubMed  CAS  Google Scholar 

  175. Lochrie MA, Mendel JE, Sternberg PW, Simon MI: Homologous and unique G protein alpha subunits in the nematode Caenorhabditis elegans. Cell Regul 2: 135–154 (1991).

    PubMed  CAS  Google Scholar 

  176. Loewenstein WR: The cell-to-cell channel of gap junctions. Cell 48: 725–726 (1987).

    PubMed  CAS  Google Scholar 

  177. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE: The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326 (1987).

    PubMed  CAS  Google Scholar 

  178. Lowe DG, Chang MS, Hellmiss R, Chen E, Singh S, Garbers DL, Goeddel DV: Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J 8: 1377–1384 (1989).

    PubMed  CAS  Google Scholar 

  179. Lowenstein EJ, Daly RJ, Batzer AG, Li W, Margolis B, Lammers R, Ullrich A, Skolnik EY, Bar-Sagi D, Schlessinger J: The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signalling. Cell 70: 431–442 (1992).

    PubMed  CAS  Google Scholar 

  180. Ludérus MEE, van der Most RG, Otte AP, van Driel R: A protein kinase C-related enzyme activity in Dictyostelium discoideum. FEBS Lett 253: 71–75 (1989).

    Google Scholar 

  181. Ma HW, Blitzer RD, Healy ED, Premont RT, Landau EM, Iyengar R: Receptor-evoked Cl-current in Xenopus Oocytes is mediated through a β-type phospholipase C. J Biol Chem 268: 19915–19918 (1993).

    PubMed  CAS  Google Scholar 

  182. Maeda N, Kawasaki T, Nakade S, YokotaN, Taguchi T, Kasai M, Mikoshiba K: Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266: 1109–1116(1991).

    PubMed  CAS  Google Scholar 

  183. Mann SKO, Yonemoto WM, Taylor SS, Firtel RA: DdPK3, which plays essential roles during Dictyostelium development, encodes the catalytic subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci USA 89: 10701–10705 (1992).

    PubMed  CAS  Google Scholar 

  184. Margolis B, Li N, Koch A, Mohammadi M, Hurwitz D, Ullrich A, Zilberstein A, Pawson T, Schlessinger J: The tyrosine phosphorylated carboxy terminus of the EGF receptor is a binding site for GAP and PLCγ. EMBO J 9: 4375–4380 (1990).

    PubMed  CAS  Google Scholar 

  185. Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L: Nuclear localization and signalling activity of phosphoinositidase Cβ in Swiss 3T3 cells. Nature 358: 242–245 (1992).

    PubMed  CAS  Google Scholar 

  186. Matsumoto K, Uno I, Oshima Y, Ishikawa T: Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase. Proc Natl Acad Sci USA 79: 2355–2359 (1982).

    PubMed  CAS  Google Scholar 

  187. McKay DB, Weber IT, Steitz TA: Structure of catabo-lite gene activator protein at 2.9-A resolution. J Biol Chem 257: 9518–9524(1982).

    PubMed  CAS  Google Scholar 

  188. McLaughlin SK, McKinnon PJ, Margolskee RF: Gust-ducin is a taste-cell-specific G protein closely related to the transducins. Nature 357: 563–569 (1992).

    PubMed  CAS  Google Scholar 

  189. Méry PF, Lohmann SM, Walter U, Fischmeister R: Ca2+ current is regulated by cyclic GMP-dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci USA 88: 1197–1201 (1991).

    PubMed  Google Scholar 

  190. Mignery GA, Südhof TC, Takei K, De Camilli P: Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342: 192–195 (1989).

    PubMed  CAS  Google Scholar 

  191. Mignery GA, Südhof TC: The ligand binding site and transduction mechanism in the inositol-1,4,5-triphos-phate receptor. EMBO J 9: 3893–3898 (1990).

    PubMed  CAS  Google Scholar 

  192. Mignery GA, Johnston PA, Sudhof TC: Mechanism of Ca2+ inhibition of inositol 1,4,5-trisphosphate (InsP3) binding to the cerebellar InsP3 receptor. J Biol Chem 267: 7450–7455 (1992).

    PubMed  CAS  Google Scholar 

  193. Millar JBA, Lenaers G, Russel P: Pyp3 PTPase acts as a mitotic inducer in fission yeast. EMBO J 11: 4933–4941 (1992).

    PubMed  CAS  Google Scholar 

  194. Millar JBA, Russel P, Dixon JE, Guan KL: Negative regulation of mitosis by two functionally overlapping PTPases in fission yeast. EMBO J 11:4943–4952 (1992).

    PubMed  CAS  Google Scholar 

  195. Miyajima I, Nakafuku M, Nakayama N, Brenner C, Miyajima A, Kaibuchi AK, Arai K, Kaziro Y, Matsumoto K: GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50: 1011–1019(1987).

    PubMed  CAS  Google Scholar 

  196. Mohammadi M, Dionne Ca, Li W, Li N, Spivak T, Honegger AM, Jaye M, Schlessinger J: Point mutation in FGF receptor eliminates phosphatidylinositol hydrolysis without affecting mitogenesis. Nature 358: 681–684 (1992).

    PubMed  CAS  Google Scholar 

  197. Moran MF, Koch CA, Anderson D, Ellis C, England L, Martin GS, Pawson T: Src homology region 2 domains direct protein-protein interactions in signal transduction. Proc Natl Acad Sci USA 87: 8622–8626 (1990).

    PubMed  CAS  Google Scholar 

  198. Mustelin T, Coggeshall KM, Altman A: Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci USA 86: 6302–6306 (1989).

    PubMed  CAS  Google Scholar 

  199. Mutzel R, Lacombe ML, Simon MN, De Gunzburg J, Veron M: Cloning and cDNA sequence of the regulatory subunit of cAMP-dependent protein kinase from Dictyostelium discoideum. Proc Natl Acad Sci USA 84: 6–10 (1987).

    PubMed  CAS  Google Scholar 

  200. Nakafuku M, Itoh H, Nakamura S, Kaziro Y: Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the subunit of mammalian G proteins. Proc Natl Acad Sci USA 84: 2140–2144 (1987).

    PubMed  CAS  Google Scholar 

  201. Nakafuku M, ObaraT, Kaibuchi K, Miyajimal, Miyajima A, Itoh H, Nakamura S, Arai K, Matsumoto K, Kaziro Y: Isolation of a second yeast Saccharomyces cerevisiae gene (GPA2) coding for guanine nucleotide-binding regulatory protein: studies on its structure and possible functions. Proc Natl Acad Sci USA 85: 1374–1378 (1988).

    PubMed  CAS  Google Scholar 

  202. Nakane M, Arai K, Saheki S, Kuno T, Buechler W, Murad F: Molecular cloning and expression of cDNAs coding for soluble guanylate cyclase from rat lung. J Biol Chem 265: 16841–16845 (1990).

    PubMed  CAS  Google Scholar 

  203. Nakanishi H, Brewer KA, Exton JH: Activation of the ζ isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 268: 13–16 (1993).

    PubMed  CAS  Google Scholar 

  204. Nakanishi S: Molecular diversity of glutamate receptors and implications for brain function. Science 258: 597–603 (1992).

    PubMed  CAS  Google Scholar 

  205. Nakayama N, Miyajima A, Arai K: Nucleotide sequences of STE2 and STE3, cell type-specific sterile genes from Saccharomyces cerevisiae. EMBO J 4: 2643–2648 (1985).

    PubMed  CAS  Google Scholar 

  206. Nathans J, Hogness DS: Isolation and nucleotide sequence of the gene encoding human rhodopsin. Proc Natl Acad Sci USA 81: 4851–4855 (1984).

    PubMed  CAS  Google Scholar 

  207. Nathans J, Thomas D, Hogness DS: Molecular genetics of human color vision: the genes encoding blue, green, and red pigments. Science 232: 193–202 (1986).

    PubMed  CAS  Google Scholar 

  208. Nishida E, Gotoh Y: The map kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18: 128–131 (1993).

    PubMed  CAS  Google Scholar 

  209. Nishizuka Y: The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 224: 661–665(1988).

    Google Scholar 

  210. Noel JP, Hamm HE, Sigler PB: The 2.2 A crystal structure of transducin-α complexed with GTPγS. Nature 366: 654–663 (1993).

    PubMed  CAS  Google Scholar 

  211. Obara T, Nakafuku M, Yamamota M, Kaziro Y: Isolation and characterization of a gene encoding a G-protein a subunit from Schizosaccharomyces pombe: involvement in mating and sporulation pathways. Proc Natl Acad Sci USA 88: 5877–5881 (1991).

    PubMed  CAS  Google Scholar 

  212. Ogita K, Miyamoto S, Yamaguchi K, Koide H, Fumisawa N, Kikkawa U, Sahara S, Fukami Y, Nishizuka Y: Isolation and characterization of δ-sub specie s of protein kinase C from rat brain. Proc Natl Acad Sci USA 89: 1592–1596 (1992).

    PubMed  CAS  Google Scholar 

  213. Olate J, Jorquera H, Purcell P, Codina J, Birnbaumer L, Allende JE: Molecular cloning and sequence determination of a cDNA coding for the α-subunit of a G0-type protein of Xenopus laevis oocytes. FEBS Lett 244: 188–192 (1989).

    PubMed  CAS  Google Scholar 

  214. Olivier JP, Raabe T, Henkemeyer M, Dickson B, Mbamalu G, Margolis B, Schlessinger J, Hafen E, Pawson T: A Drosophila SH2-SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 73: 179–191 (1993).

    PubMed  CAS  Google Scholar 

  215. Ono Y, Fujii T, Ogita K, Kikkawa U, Igarashi K, Nishizuka Y: Protein kinase C ζ subspecies from rat brain: its structure, expression, and properties. Proc Natl Acad Sci USA 86: 3099–3103 (1989).

    PubMed  CAS  Google Scholar 

  216. Ottillie S, Chernoff J, Hannig F, Hoffman CS, Erikson RL: The fission yeast genes pyp1+ and pyp2+ encode protein tyrosine phosphatases that negatively regulate mitosis. Mol Cell Biol 12: 5571–5580 (1992).

    Google Scholar 

  217. OTousa JE, Baehr W, Martin RL, Hirsh J, Pak WL, Applebury ML: The Drosophila ninaE gene encodes an opsin. Cell 40: 839–850 (1985).

    PubMed  Google Scholar 

  218. Pai EF, Krengerl U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A: Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35 A resolution: implications for the mechanisms of GTP hydrolysis. EMBO J 9: 2351–2359 (1990).

    PubMed  CAS  Google Scholar 

  219. Park D, Jhon DY, Lee CW, Ryu SH, Rhee SG: Removal of the carboxyl-terminal region of phospholipase C-β 1 by calpain abolishes activation by Gα;q. J Biol Chem268: 3710–3714(1993).

    PubMed  Google Scholar 

  220. Park D, Jhon DY, Lee CW, Lee KH, Rhee SG: Activation of phospholipase C isozymes by G protein ß γ subunits. J Biol Chem 268: 4573–4576 (1993).

    PubMed  CAS  Google Scholar 

  221. Parker MG: Steroid and related receptors. Curr Opin Cell Biol 5: 499–504 (1993).

    PubMed  CAS  Google Scholar 

  222. Parks S, Wieschaus E: The Drosophila gastrulation gene concertina encodes a Gα-like protein. Cell 64: 447–458 (1991).

    PubMed  CAS  Google Scholar 

  223. Pawson T, Schlessinger J: SH2 and SH3 domains. Curr Biol 3: 434–442 (1993).

    PubMed  CAS  Google Scholar 

  224. Payne WE, Fitzgerald-Hayes M: A mutation in PLC1, a candidate phosphoinositide-specific phospholipase C gene from Saccharomyces cerevisiae, causes aberrant mitotic chromosome segregation. Mol Cell Biol 13: 4351–4364 (1993).

    PubMed  CAS  Google Scholar 

  225. Pelech SL, Sanghere JS: Mitogen-activated protein kinases: versatile transducers for cell signalling. Trends Biochem Sci 17: 233–238 (1992).

    PubMed  CAS  Google Scholar 

  226. Perkins LA, Larsen I, Perrimon N: Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 70: 225–236 (1992).

    PubMed  CAS  Google Scholar 

  227. Perrimon N: The torso receptor protein-tyrosine kinase signalling pathway: an endless story. Cell 74: 219–222 (1993).

    PubMed  CAS  Google Scholar 

  228. Pingel JT, Thomas ML: Evidence that the leukocytecommon antigen is required for antigen-induced T lymphocyte proliferation. Cell 58: 1055–1065 (1989).

    PubMed  CAS  Google Scholar 

  229. Pitt GS, Milona N, Borleis J, Lin KC, Reed RR, Devreotes PN: Structurally distinct and stage-specific adenylyl cyclase genes play different roles in Dictyostelium development. Cell 69: 305–315 (1992).

    PubMed  CAS  Google Scholar 

  230. Pollak MR, Brown EM, Chou YHW, Hebert SC, Marx SJ, Steinmann B, Levi T, Seidman CE, Seidman JG: Mutations in the human Ca2+-sensing receptor gene cause familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Cell 75: 1297–1303 (1993).

    PubMed  CAS  Google Scholar 

  231. Powers S, Kataoka T, Fasano O, Goldfarb M, Broach J, Wigler M: Genes in S. cerevisiae encoding proteins with domains homologous to the mammalian ras proteins. Cell 36: 607–612 (1984).

    PubMed  CAS  Google Scholar 

  232. Price JV, Clifford RJ, Schupbach T: The maternal ven-tralizing locus torpedo is allelic to faint little ball, an embryonic lethal, and encodes the Drosophila EGF receptor homolog. Cell 56: 1085–1092 (1989).

    PubMed  CAS  Google Scholar 

  233. Probst WC, Snyder LA, Schuster DI, Brosius J, Sealfon SC: Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11: 1–20 (1992).

    PubMed  CAS  Google Scholar 

  234. Pupillo M, Kumagai A, Pitt GS, Firtel RA, Devreotes PN: Multiple α subunits of guanine nucleotide-binding proteins in Dictyostelium. Proc Natl Acad Sci USA 86: 4892–4896 (1989).

    PubMed  CAS  Google Scholar 

  235. Ravid S, Spudich JA: Membrane-bound Dictyostelium myosin heavy chain kinase: a developmentally regulated sub strate-specific member of the protein kinase C family. Proc Natl Acad Sci USA 89: 5877–5881 (1992).

    PubMed  CAS  Google Scholar 

  236. Rebecchi M, Peterson A, McLaughlin S: Phosphoinositide-specific phospholipase C-δ1 binds with high affinity to phospholipid vesicles containing phosphati-dylinositol 4,5-bisphosphate. Biochemistry 31: 12742–12747 (1992).

    PubMed  CAS  Google Scholar 

  237. Reymond CD, Gomer RH, Medhy MC, Firtel RA: Developmental regulation of a Dictyostelium gene encoding a protein homologous to mammalian ras protein. Cell 39: 141–148 (1984).

    PubMed  CAS  Google Scholar 

  238. Reymond CD, Gomer RH, Neuen W, Theibert A, Devreotes P, Firtel RA: Phenotypic changes induced by a mutated ras gene during the development of Dictyostelium transformants. Nature 323: 340–343 (1986).

    PubMed  CAS  Google Scholar 

  239. Rhee SG, Choi KD: regulation of inositol phospholipid-specific phospholipase C isozymes. J Biol Chem 267: 12393–12396 (1992).

    PubMed  CAS  Google Scholar 

  240. Robbins SM, Williams JG, Jermyn KA, Spiegelman GB, Weeks G: Growing and developing Dictyostelium cells express different ras genes. Proc Natl Acad Sci USA 86: 938–942 (1989).

    PubMed  CAS  Google Scholar 

  241. Rosenthal A, Rhee L, Yadegari R, Paro R, Ullrich A, Goeddel DV: Structure and nucleotide sequence of a Drosophila melanogaster protein kinase C gene. EMBO J 6: 433–441 (1987).

    PubMed  CAS  Google Scholar 

  242. Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, Meldolesi J: The inositol 1,4,5-trisphos-phate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 111: 615–624 (1990).

    PubMed  CAS  Google Scholar 

  243. Savarese TM, Fraser CM: In vitro mutagenesis and the search for structure-function relationships among G protein-coupled receptors. Biochem J 283: 1–19 (1992).

    PubMed  CAS  Google Scholar 

  244. Saxe CL, Ginsburg GT, Louis JM, Johnson Rn, Devreotes PN, Kimmel AR: cAR2, a prestalk cAMP receptor required for normal tip formation and late development of Dictyostelium discoideum. Genes Devel 7: 262–272 (1992).

    Google Scholar 

  245. Schaeffer E, Smith D, Mardon G, Quinn W, Zuker C: Isolation and characterization of two new Drosophila protein kinase C genes, including one specifically expressed in photoreceptor cells. Cell 57: 403–412 (1989).

    PubMed  CAS  Google Scholar 

  246. Schlessinger J, Ullrich A: Growth factor signalling by receptor tyrosine kinases. Neuron 9: 383–391 (1992).

    PubMed  CAS  Google Scholar 

  247. Schlessinger J: How receptor tyrosine kinases activate ras. Trends Biochem Sci 18: 273–275 (1993).

    PubMed  CAS  Google Scholar 

  248. Schmidt HHHW, Lohmann SM, Walter U: The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178: 153–175 (1993).

    PubMed  CAS  Google Scholar 

  249. Schneuwly S, Burg MG, Lending C, Perdew MH, Pak WL: Properties of photoreceptor-specific phospholipase C encoded by the norpA gene of Drosophila melanogaster. J Biol Chem 266: 24314–24319 (1991).

    PubMed  CAS  Google Scholar 

  250. Schofield PR, Darlison MG, FujitaN, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA: Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328: 221–227 (1987).

    PubMed  CAS  Google Scholar 

  251. Schultz JE, Schönefeld U, Klumpp S: Calcium/calm-odulin-regulated guanylate cyclase and calcium-permeability in the ciliary membrane from Tetrahymena. Eur J Biochem 137: 89–94 (1983).

    PubMed  CAS  Google Scholar 

  252. Schultz JE, Pohl T, Klumpp S: Voltage-gated Ca2+ entry into Paramecium linked to intraciliary increase in cyclic GMP. Nature 322: 271–273 (1986).

    CAS  Google Scholar 

  253. Schulz S, Singh S, Bellet RA, Singh G, Tubb DJ, Chin H, Garbers DL: The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell 58: 1155–1162 (1989).

    PubMed  CAS  Google Scholar 

  254. Schulz S, Green CK, Yuen PST, Garbers DL: Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell 63: 941–948 (1990).

    PubMed  CAS  Google Scholar 

  255. Seger R, Seger D, Lozeman FJ, Ahn NG, Graves LM, Campbell JS, Ericsson L, Harrylock M, Jensen AM, Krebs EG: Human T-cell mitogen-activated protein kinase kinases are related to yeast signal transduction kinases. J Biol Chem 267: 25628–25631 (1992).

    PubMed  CAS  Google Scholar 

  256. Segre GV, Goldring SR: Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein linked receptor family. Trends Endocrinol Metab 4: 309–314 (1993).

    PubMed  CAS  Google Scholar 

  257. Serafini T, Orci L, Amherdt M, Brunner M, Kahn RA, Rothman JE: ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein. Cell 67: 239–253 (1991).

    PubMed  CAS  Google Scholar 

  258. Shen SH, Bastien L, Posner BI, Chretien P: A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 352: 736–739 (1991).

    PubMed  CAS  Google Scholar 

  259. Shirakabe K, Gotoh Y, Nishida E: A mitogen-activated protein (MAP) kinase activating factor in mammalian mitogen-stimulated cells is homologous to Xenopus M phase MAP kinase activator. J Biol Chem 267: 16685–16690 (1992).

    PubMed  CAS  Google Scholar 

  260. Shiroo M, Goff L, Biffen M, Shivnan E, Alexander D: CD45 tyrosine phosphatase-activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. EMBO J 11: 4887–4897 (1993).

    Google Scholar 

  261. Short AD, Klein MG, Schneider MF, Gill DL: Inositol 1,4,5-trisphosphate-mediated quantal Ca2+ release measured by high resolution imaging of Ca2+ within organelles. J Biol Chem 268: 25887–25983 (1993).

    PubMed  CAS  Google Scholar 

  262. Shortridge RD, Yoon J, Lending CR, Bloomquist BT, Perdew MH, Pak WL: A Drosophila phospholipase C gene that is expressed in the central nervous system. J Biol Chem 266: 12474–12480 (1991).

    PubMed  CAS  Google Scholar 

  263. Shyjan AW, de Sauvage FJ, Gillett NA, Goeddel DV, Lowe DG: Molecular cloning of a retina-specific membrane guanylyl cyclase. Neuron 9: 727–737 (1992).

    PubMed  CAS  Google Scholar 

  264. Smercka AV, Hepler JR, Brown KO, Sternweis PC: Regulation of polyphosphoinositide-specific phospholipase C activity by purified Gq. Science 251: 804–807 (1991).

    Google Scholar 

  265. Simon MA, Dodson GS, Rubin GM: An SH3-SH2-SH3 protein is required for p21Rasl activation and binds to Sevenless and Sos proteins in vitro. Cell 73: 169–177 (1993).

    PubMed  CAS  Google Scholar 

  266. Singh S, Lowe DG, Thorpe DS, Rodriguez H, Kuang WJ, Dangott L, Chinkers M, Goeddel DV, Garbers DL: Membrane guanylate cyclase is a cell-surface receptor with homology to protein kinases. Nature 334: 708–710 (1988).

    PubMed  CAS  Google Scholar 

  267. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson P, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ, et al.: SH2 domains recognize specific phosphopeptide sequences. Cell 72: 767–778 (1993).

    PubMed  CAS  Google Scholar 

  268. Sprenger F, Stevens LM, Mü sslein-Volhard C: The Drosophila gene torso encodes a putative receptor tyrosine kinase. Nature 338: 478–483 (1989).

    PubMed  CAS  Google Scholar 

  269. Srivastava SP, Fuchs JA, Holtzman JL: The reported cDNA sequence for phospholipase C alpha encodes protein disulfide isomerase, isozyme Q-2 and not phospholipase C. Biochem Biophys Res Common 193: 971–978 (1993).

    CAS  Google Scholar 

  270. Stahl ML, Ferenz CR, Kelleher KL, Kriz RW, Knopf JL: Sequence similarity of phospholipase C with the non-catalytic region of src. Nature 332: 269–272 (1988).

    PubMed  CAS  Google Scholar 

  271. Stearns T, Willingham MC, Botstein D, Kahn RA: ADP-ribosylation factor is functionally and physically associated with the Golgi comples. Proc Natl Acad Sci USA 87: 1238–1242 (1990).

    PubMed  CAS  Google Scholar 

  272. Strathmann MP, Simon MI: GGα12 and Gα13 subunits define a fourth class of G protein α subunits. Proc Natl Acad Sci USA 88: 5582–5586 (1991).

    PubMed  CAS  Google Scholar 

  273. Streb H, Irvine RF, Berridge MJ, Schulz I: Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306: 67–68 (1983).

    PubMed  CAS  Google Scholar 

  274. Streuli M, Krueger NX, Hall LR, Schlossman SF, Saito H: A new member of the immunoglobulin superfamily that has a cytoplasmic region homologous to the leukocyte common antigen. J Exp Med 168: 1523–1530 (1988).

    PubMed  CAS  Google Scholar 

  275. Streuli M, Krueger NX, Tsai AYM, Saito H: A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila. Proc Natl Acad Sci USA 86: 8698–8702 (1989).

    PubMed  CAS  Google Scholar 

  276. Streuli M, Krueger NX, Thai T, Tang M, Saito H: Distinct function roles of the two intracellular phosphatase like domains of the receptor-linked protein tyrosine phosphatases LCA and LAR. EMBO J 9: 2399–2407 (1990).

    PubMed  CAS  Google Scholar 

  277. Stryer L: Visual excitation and recovery. J Biol Chem 266: 10711–10714(1991).

    Google Scholar 

  278. Südhof TC, Newton CL, Archer III BT, Ushkaryov YA, Mignery GA: Structure of a novel InsP3 receptor. EMBO 10: 3199–3206 (1991).

    Google Scholar 

  279. Suh PG, Ryu SH, Moon KH, Suh HW, Rhee SG: Inositolphospholipid-specific phospholipase C: complete cDNA and protein sequences and sequence homology to tyrosine kinase-related oncogene products. Proc Natl Acad Sci USA 85: 5419–5423 (1988).

    PubMed  CAS  Google Scholar 

  280. Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352: 73–77 (1991).

    PubMed  CAS  Google Scholar 

  281. Supattapone S, Danoff SK, Theibert A, Joseph SK, Steiner J, Snyder SH: Cyclic AMP-dependent phosphorylation of a brain inositol trisphosphate receptor decreases its release of calcium. Proc Natl Acad Sci USA 85: 8747–8750 (1988).

    PubMed  CAS  Google Scholar 

  282. Tabuse Y, Nishiwaki K, Miwa J: Mutations in a protein kinase C homolog confer phorbol ester resistance on Caenorhabditis elegans. Science 243: 1713–1716(1989).

    PubMed  CAS  Google Scholar 

  283. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S: Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439–445 (1989).

    PubMed  CAS  Google Scholar 

  284. Takio K, Smith SB, Krebs EG, Walsh KA, Titani K: Amino acid sequence of the regulatory subunit of bovine type II adenosine cyclic 3′5′-phosphate dependent protein kinase. Biochemistry 23: 4200–4206 (1984).

    PubMed  CAS  Google Scholar 

  285. Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K: Guanosine cyclic 3′5′-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23: 4207–4218 (1984).

    PubMed  CAS  Google Scholar 

  286. Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kaziro Y, Toh-e: S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60: 803–807 (1990).

    PubMed  CAS  Google Scholar 

  287. Tanaka K, Davey J, Imai Y, Yamamoto M: Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor. Mol Cell Biol 10: 4303–4313 (1993).

    Google Scholar 

  288. Tang W, Gilman AG: Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254: 1500–1503 (1991).

    PubMed  CAS  Google Scholar 

  289. Tang W, Gilman AG: Adenylyl cyclases. Cell 70: 869–872 (1992).

    PubMed  CAS  Google Scholar 

  290. Tatchell K, Chaleff DT, DeFeo-Jones D, Scolnick EM: Requirement of either of a pair of ras-related genes of Saccharomyces cerevisiae for spore viability. Nature 309: 523–527 (1984).

    PubMed  CAS  Google Scholar 

  291. Taylor CW, Marshall ICB: Calcium and inositol 1,4,5-trisphosphate receptors: a complex relationship. Trends Biochem Sci 17: 403–407 (1992).

    PubMed  CAS  Google Scholar 

  292. Taylor SJ, Chae HZ, Rhee SG, Exton JH: Activation of the β1 isozyme of phospholipase C by a subunits of the Gq class of G proteins. Nature 350: 516–518 (1991).

    PubMed  CAS  Google Scholar 

  293. Thomas GMH, Cunningham E, Fensome A, Ball A, Totty NF, Truong O, Hsuan JJ, Cockroft S: An essential role for phosphatidylinositol transfer protein in phospholipase C-mediated inositol lipid signalling. Cell 74: 919–928 (1993).

    PubMed  CAS  Google Scholar 

  294. Thorpe DS, Garbers DL: The membrane form of guanylate cyclase — homology with a subunit of the cytoplasmic form of the enzyme. J Biol Chem 264: 6545–6549 (1989).

    PubMed  CAS  Google Scholar 

  295. Tian SS, Tsoulfas P, Zinn K: Three receptor-linked protein-tyro sine phosphatases are selectively expressed on central nervous system axons in the Drosophila embryo. Cell 67: 675–685 (1991).

    PubMed  CAS  Google Scholar 

  296. Titani K, SasagawaT, Ericsson LH, Kumar S, Smith SB, Krebs EG, Walsh KA: Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3′5′-phosphate dependent protein kinase. Biochemistry 23: 4193–4199 (1984).

    PubMed  CAS  Google Scholar 

  297. Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M: In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40: 27–36 (1985).

    PubMed  CAS  Google Scholar 

  298. Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M: Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 7: 1371–1377 (1987).

    PubMed  CAS  Google Scholar 

  299. Toda T, Cameron S, Sass P, Zoller M, Wigler M: Three different genes in S. cerevisiae encode the catalytic sub-units of the cAMP-dependent protein kinase. Cell 50: 277–287 (1987).

    PubMed  CAS  Google Scholar 

  300. Tonks NK, Charbonneau H, Diltz CD, Fischer EH, Walsh KA: Demonstration that leukocyte common antigen CD45 is a protein tyrosine phosphatase. Biochemistry 27: 8695–8701 (1988).

    PubMed  CAS  Google Scholar 

  301. Uhler MD: Cloning and expression of a novel cyclic GMP-dependent protein kinase from mouse brain. J Biol Chem 268: 13586–13591 (1993).

    PubMed  CAS  Google Scholar 

  302. Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 61: 203–212 (1990).

    PubMed  CAS  Google Scholar 

  303. Valkema R, van Haastert PJM: Inhibition of receptor-stimulated guanylyl cyclase by intracellular calcium ions in dictyostelium discoideum cells. Biochem Biophys Res Commun 186: 263–268 (1992).

    PubMed  CAS  Google Scholar 

  304. van der Kaay J, Draijer R, van Haastert PJM: Increased conversion of phosphatidylinositol to phosphatidylinositol phosphate in Dictyostelium cells expressing a mutated ras gene. Proc Natl Acad Sci USA 87: 9197–9201 (1990).

    PubMed  Google Scholar 

  305. van Dop C, Tsubokawa M, Bourne HR, Ramachan-dran J: Amino acid sequence of retinal transducin at the site ADP-ribosylated by cholera toxin. J Biol Chem 259: 696–698 (1984).

    PubMed  Google Scholar 

  306. van Haastert PJM: Signal transduction and the control of development in Dictyostelium discoideum. Devel Biol 1: 159–167 (1990).

    Google Scholar 

  307. Vogel W, Lammers R, Huang J, Ullrich A: Activation of a phosphotyrosine phosphatase by tyrosine phosphorylation. Science 259: 1611–1614 (1993).

    PubMed  CAS  Google Scholar 

  308. Ways DK, Cook PP, Webster C, Parker PP: Effect of phorbol esters on protein kinase C-ζ. J Biol Chem 267: 4799–4805 (1992).

    PubMed  CAS  Google Scholar 

  309. Weaver CT, Pingel JT, Nelson JO, Thomas ML: CD8+ T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol Cell Biol 11: 4415–4422 (1991).

    PubMed  CAS  Google Scholar 

  310. West RE, Moss J, Vaughan M, Liu T, Liu TY: Pertussis toxin-catalyzed ADP-ribosylation of transducin. J Biol Chem 260: 14428–14430 (1985).

    PubMed  CAS  Google Scholar 

  311. Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O’Hara P, MacKay VL: The STE4 and STE18 genes of yeast encode potential β and y subunits of the mating factor receptor-coupled G protein. Cell 56: 467–477 (1989).

    PubMed  CAS  Google Scholar 

  312. Whiteway M, Errede B: Signal transduction pathway for pheromone response in Saccharomyces cerevisiae. In: Kurjan J, Taylor BL (eds) Signal Transduction: Prokaryotic and simple Eukaryotic Systems, pp. 189–237. Academic Press, New York (1993).

    Google Scholar 

  313. Wolfe L, Corbin JD, Francis SH: Characterization of a novel isozyme of cGMP-dependent protein kinase from bovine aorta. J Biol Chem 264: 7734–7741 (1989).

    PubMed  CAS  Google Scholar 

  314. Wu L, Devreotes PN: dictyostelium transiently expresses eight distinct G-protein α-subunits during its developmental program. Biochem Biophys Res Commun 179: 1141–1147(1991).

    PubMed  CAS  Google Scholar 

  315. Wu D, Jiang H, Katz A, Simon MI: Identification of critical regions on phospholipase C-β1 required for activation by G-proteins. J Biol Chem 268: 3704–3709 (1993).

    PubMed  CAS  Google Scholar 

  316. Wu D, Katz A, Simon MI: Activation of phospholipase C β2 by the α and βγ subunits of trimeric GTP-binding protein. Proc Natl Acad Sci USA 90: 5297–5301 (1993).

    PubMed  CAS  Google Scholar 

  317. Yamawaki-Kataoka Y, Tamaoki T, Choe HR, Tanaka H, Kataoka T: Adenylate cyclase in yeast: a comparison of the genes from Schizoaccharomyces pombe and Saccharomyces cerevisiae. Proc Natl Acad Sci USA 86: 5693–5697 (1989).

    PubMed  CAS  Google Scholar 

  318. Yoko-o T, Matsui Y, Yagisawa H, Nojima H, Uno I, Toh-e A: The putative phosphoinositide-specific phospholipase C gene, PLC1, of the yeast Saccharomyces cerevisiae is important for cell growth. Proc Natl Acad Sci USA 90: 1804–1808 (1993).

    PubMed  CAS  Google Scholar 

  319. Yoshikawa S, Tanimura T, Miyawaki A, Nakamura M, Yuzaki M, Furuichi T, Mikoshiba K: Molecular cloning and characterization of the inositol,4,5-trisphosphate receptor in Drosophila melanogaster. J Biol Chem 267: 16613–16619 (1992).

    PubMed  CAS  Google Scholar 

  320. Yoshikawa S, Miyamoto I, Aruga J, Furuichi T, Okano H, Mikoshiba K: Isolation of a Drosophila gene encoding a head-specific guanylyl cyclase. J Neurochem 60: 1570–1573 (1993).

    PubMed  CAS  Google Scholar 

  321. Yuen PST, Garbers DL: Guanylyl cyclase-linked receptors. Annu Rev Neurosci 15: 193–225 (1992).

    PubMed  CAS  Google Scholar 

  322. Zuker CS, Cowman AF, Rubin GM: Isolation and structure of rhodopsin gene from D. melanogaster. Cell 40: 851–858 (1985).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Palme

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Drayer, A.L., van Haastert, P.J.M. (1994). Transmembrane signalling in eukaryotes: a comparison between higher and lower eukaryotes. In: Palme, K. (eds) Signals and Signal Transduction Pathways in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0239-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0239-1_1

  • Received:

  • Accepted:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4107-2

  • Online ISBN: 978-94-011-0239-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics