Skip to main content

The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei

  • Chapter
Primary and Secondary Metabolism of Plants and Cell Cultures III

Abstract

Suspension cultures of Coleus blumei accumulate very high amounts of rosmarinic acid, an ester of caffeic acid and 3,4-dihydroxyphenyllactate, in medium with elevated sucrose concentrations. Since the synthesis of this high level of rosmarinic acid occurs in only five days of the culture period, the activities of the enzymes involved in the biosynthesis are very high. Therefore all the enzymes necessary for the formation of rosmarinic acid from the precursors phenylalanine and tyrosine could be isolated from cell cultures of Coleus blumei: phenylalanine ammonia-lyase, cinnamic acid 4-hydroxylase, hydroxycinnamoyl:CoA ligase, tyrosine aminotransferase, hydroxyphenylpyruvate reductase, rosmarinic acid synthase and two microsomal 3- and 3′-hydroxylases. The main characteristics of these enzymes of the proposed biosynthetic pathway of rosmarinic acid will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

DHPL:

3,4-dihydroxyphenyllactate

DHPP:

3,4-dihydroxyphenylpyruvate

pHPL:

4-hydroxy-phenyllactate

pHPP:

4-hydroxyphenylpyruvate

RA:

rosmarinic acid

References

  • Benveniste I, Salaün JP & Durst F (1977) Wounding-induced cinnamic acid hydroxylase in Jerusalem artichoke tuber. Phytochemistry 16: 69–73

    Article  CAS  Google Scholar 

  • Benveniste I, Salaün JP, Simon A, Reichhardt D & Durst F (1982) Cytochrome P-450-dependent ω-hydroxylation of lauric acid by microsomes of pea seedlings. Plant Physiol. 70: 122–126

    Article  PubMed  CAS  Google Scholar 

  • Boniwell JM & Butt VS (1986) Flavine nucleotide dependent 3-hydroxylation of 4-hydroxyphenylpropanoid carboxylic acids by particulate preparations from potato tubers. Z. Naturforsch. 41c: 56–60

    Google Scholar 

  • Butt VS (1985) Oxygenation and oxidation in the metabolism of aromatic compounds. In: Van Sumere CF & Lea PJ (Eds) The Biochemistry of Plant Phenolics (pp 349–365). Clarendon Press, Oxford

    Google Scholar 

  • De-Eknamkul W & Ellis BE (1987a) Tyrosine aminotransferase: the entrypoint enzyme of the tyrosine-derived pathway in rosmarinic acid biosynthesis. Phytochemistry 26: 1941–1946

    Article  CAS  Google Scholar 

  • De-Eknamkul W & Ellis BE (1987b) Purification and characterization of tyrosine aminotransferase activities from Anchusa officinalis cell cultures. Arch. Biochem. Biophys. 257: 430–438

    Article  PubMed  CAS  Google Scholar 

  • De-Eknamkul W & Ellis BE (1988) Rosmarinic acid: production in plant cell cultures. In: Bajaj YPS (Ed) Biotechnology in Agriculture and Forestry, Vol 4, Medicinal and Aromatic Plants I (pp 310–329). Springer-Verlag, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Ellis BE, Remmen S & Goeree G (1979) Interactions between parallel pathways during biosynthesis of rosmarinic acid in cell suspension cultures of Coleus blumei. Planta 147: 163–167

    Article  CAS  Google Scholar 

  • Ellis BE & Towers GHN (1970) Biogenesis of rosmarinic acid in Mentha. Biochem. J. 118: 291–297

    PubMed  CAS  Google Scholar 

  • Forkmann G, Heller W & Grisebach H (1980) Anthocyanin biosynthesis in flowers of Matthiola incana. Flavanone 3-and flavonoid 3’-hydroxylases. Z. Naturforsch. 35c: 691–695

    CAS  Google Scholar 

  • Friedrich CA, Morizot DC, Siciliano MJ & Ferell RE (1987) The reduction of aromatic alpha-keto acids by cytoplasmatic malate dehydrogenase and lactate dehydrogenase. Biochem. Genet. 25: 657–669

    Article  Google Scholar 

  • Friedrich CA, Ferell RE, Siciliano MJ & Kitto GB (1988) Biochemical and genetic identity of alpha-keto reductase and cytoplasmatic malate dehydrogenase from human erythrocytes. Ann. Hum. Gen. 52: 25–37

    Article  Google Scholar 

  • Gamborg OL, Miller RA & Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Gertlowski C & Petersen M (1993) Influence of the carbon source on growth and rosmarinic acid production in suspension cultures of Coleus blumei. Plant Cell Tiss. Org. Cult., 34: 183–190

    Article  CAS  Google Scholar 

  • Hagmann ML, Heller W & Grisebach H (1983) Induction and characterization of a microsomal flavonoid 3’-hydroxylase from parsley cell cultures. Eur. J. Biochem 134: 547–554

    Article  PubMed  CAS  Google Scholar 

  • Harborne JB (1966) Caffeic acid ester distribution in higher plants. Z. Naturforsch. 21 b: 604–605

    Google Scholar 

  • Häusler E, Petersen M & Alfermann AW (1991) Hydroxy-phenylpyruvate reductase from cell suspension cultures of Coleus blumei Benth. Z. Naturforsch. 46c: 371–376

    Google Scholar 

  • Häusler E, Petersen M & Alfermann AW (1992) Rosmarinsäure in Blechnum-Spezies. In: Haschke HP & Schnarrenberger C (Eds) Botanikertagung 1992 Berlin (p 507). Akademie Verlag, Berlin

    Google Scholar 

  • Heller W & Kühnl T (1985) Elicitor induction of a microsomal 5-O-(4-coumaroyl)shikimate 3’-hydroxylase in parsley cell suspension cultures. Arch. Biochem. Biophys. 241: 453–460

    Article  PubMed  CAS  Google Scholar 

  • Kamsteeg J, van Brederode J, Verschuren PM & van Nigtevecht G (1981) Identification, properties and genetic control of p-coumaroyl-coenzyme A 3-hydroxylase isolated from petals of Silene dioica. Z. Pflanzenphysiol. 102: 435–442

    CAS  Google Scholar 

  • Karwatzki B (1992) Biochemische und immunchemische Untersuchungen zur Hydroxyzimtsäure:CoA Ligase aus rosmarinsäurebildenden Zellkulturen von Coleus blumei Benth. Doctoral thesis, University of Düsseldorf

    Google Scholar 

  • Karwatzki B, Petersen M & Alfermann AW (1989) Transient activity of enzymes involved in the biosynthesis of rosmarinic acid in cell suspension cultures of Coleus blumei. Planta Med. 55: 663–664

    Article  Google Scholar 

  • Kneusel RE, Matern U & Nicolay K (1989) Formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH-shift. Arch. Biochem. Biophys. 269: 455–462

    Article  PubMed  CAS  Google Scholar 

  • Kojima M & Takeuchi W (1989) Detection and characterization of P-coumaric acid hydroxylase in mung bean, Vigna mungo, seedlings. J. Biochem. 105: 265–270

    PubMed  CAS  Google Scholar 

  • Kojima M & Villegas RJA (1984) Detection of the enzyme in sweet potato which catalyzes trans-esterification between 1-O-p-coumaroyl-d-glucose and d-quinic acid. Agric. Biol. Chem. 48: 2397–2399

    Article  CAS  Google Scholar 

  • Kreuzaler F & Hahlbrock K (1972) Enzymatic synthesis of aromatic compounds in higher plants: formation of naringenin (5,7,4’-trihydroxyflavanone) from p-coumaroyl-coenzyme A and malonyl-coenzyme A. FEBS Letters 28: 69–72

    Article  PubMed  CAS  Google Scholar 

  • Kühnl T, Koch U, Heller W & Wellmann E (1987) Chlorogenic acid biosynthesis: Characterization of a light-induced microsomal 5-O-(4-coumaroyl)-D-quinate/shikimate 3’-hydroxylase from carrot (Daucus carota L.) cell suspension cultures. Arch. Biochem. Biophys. 258: 226–232

    Article  PubMed  Google Scholar 

  • Larson RL & Bussard JB (1986) Microsomal flavonoid 3’-hydroxylase from maize seedlings. Plant Physiol. 80: 483–486

    Article  PubMed  CAS  Google Scholar 

  • Litvinenko VI, Popova TP, Simonjan AV, Zoz IG & Sokolov VS (1975) “Gerbstoffe” und Oxyzimtsäureabkömmlinge in Labiaten. Planta Med. 27: 372–380

    Article  PubMed  CAS  Google Scholar 

  • Lloyd AM, Walbot V & Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258: 1773–1775

    Article  PubMed  CAS  Google Scholar 

  • Meinhard J, Petersen M & Alfermann AW (1992) Purification of hydroxyphenylpyruvate reductase from cell cultures of Coleus blumei. Planta Med. 58: A598–A599

    Article  Google Scholar 

  • Mizukami H & Ellis BE (1991) Rosmarinic acid formation and differential expression of tyrosine aminotransferase isoforms in Anchusa officinalis cell suspension cultures. Plant Cell Rep. 10: 321–324

    Article  CAS  Google Scholar 

  • Mölgaard P & Ravn H (1988) Evolutionary aspects of caffeoyl ester distribution in dicotyledons. Phytochemistry 27: 2411–2421

    Article  Google Scholar 

  • Petersen M (1991) Characterization of rosmarinic acid synthase from cell cultures of Coleus blumei. Phytochemistry 30: 2877–2881

    Article  CAS  Google Scholar 

  • Petersen M & Alfermann AW (1988) Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: Hydroxyphenylpyruvate reductase and rosmarinic acid synthase. Z. Naturforsch. 43c: 501–504

    Google Scholar 

  • Petersen M, Häusler E, Karwatzki B & Meinhard J (1993) Proposed biosynthetic pathway for rosmarinic acid in cell cultures of Coleus blumei Benth. Planta 189: 10–14

    Article  CAS  Google Scholar 

  • Petersen M & Metzger JW (1993) Identification of the reaction products of rosmarinic acid synthase from cell cultures of Coleus blumei by ion spray mass spectrometry and tandem mass spectrometry. Phytochem. Anal., 4: 131–134

    Article  CAS  Google Scholar 

  • Razzaque A & Ellis BE (1977) Rosmarinic acid production in Coleus cell cultures. Planta 137: 287–291

    Article  CAS  Google Scholar 

  • Scarpati ML & Oriente G (1958) Isolamento e costituzione dell’acido rosmarinico (dal Rosmarinus off.). Ric. Sci. 28: 2329–2333

    CAS  Google Scholar 

  • Scarpati ML & Oriente G (1960) Costituzione stereochimica dell’acido β(3,4-diossifenil)a-lattico dal Rosmarinus off. Ric. Sci. 30: 255–259

    CAS  Google Scholar 

  • Stöckigt J & Zenk MH (1974) Enzymatic synthesis of chlorogenic acid from caffeoyl coenzyme A and quinic acid. FEBS Letters 42: 131–134

    Article  PubMed  Google Scholar 

  • Stotz G & Forkmann G (1982) Hydroxylation of the B-ring of flavonoids in the 3’-and 5’-position with enzyme extracts from flowers of Verbena hybrida. Z. Naturforsch. 37c: 19–23

    CAS  Google Scholar 

  • Strack D, Gross W, Wray V & Grotjahn L (1987) Enzymic synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons. Plant Physiol. 83: 475–478

    Article  PubMed  CAS  Google Scholar 

  • Takeda R, Hasegawa J & Sinozaki K (1990) Phenolic compounds from Anthocerotae. In: Zinsmeister HD & Mues R (Eds) Bryophytes. Their chemistry and chemical taxonomy (pp 201– 207). Oxford Science Publications, Oxford

    Google Scholar 

  • Tkotz N & Strack D (1980) Enzymatic synthesis of sinapoyl-l-malate from 1-sinapoylglucose and 1-malate by a protein preparation from Raphanus sativus cotyledons. Z. Naturforsch. 35c: 835–837

    Google Scholar 

  • Ulbrich B, Wiesner W & Arens H (1985) Large-scale production of rosmarinic acid from plant cell cultures of Coleus blumei Benth. In: Neumann KH, Barz W & Reinhard E (Eds) Primary and Secondary Metabolism of Plant Cell Cultures (pp 293–303). Springer-Verlag, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Villegas RJA, Shimokawa T, Okuyama H & Kojima M (1987) Purification and characterization of chlorogenic acidxhlorogenate caffeoyl transferase in sweet potato roots. Phytochemistry 26: 1577–1581

    Article  CAS  Google Scholar 

  • Zenk MH (1991) Chasing the enzymes of secondary metabolism: Plant cell cultures as a pot of gold. Phytochemistry 30: 3861–3863

    Article  CAS  Google Scholar 

  • Zenk MH, El-Shagi H & Ulbrich B (1977) Production of rosmarinic acid by cell-suspension cultures of Coleus blumei. Naturwissenschaften 64: 585–586

    Article  CAS  Google Scholar 

  • Zinsmeister HD, Becker H & Eicher T (1991) Moose, eine Quelle biologisch aktiver Naturstoffe? Angew. Chemie 103: 134–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. Schripsema R. Verpoorte

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Petersen, M., Häusler, E., Meinhard, J., Karwatzki, B., Gertlowski, C. (1994). The biosynthesis of rosmarinic acid in suspension cultures of Coleus blumei . In: Schripsema, J., Verpoorte, R. (eds) Primary and Secondary Metabolism of Plants and Cell Cultures III. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0237-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0237-7_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4106-5

  • Online ISBN: 978-94-011-0237-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics