Radiopharmaceuticals for SPET

Part of the Developments in Nuclear Medicine book series (DNUM, volume 25)


A scintigram reflects the biodistribution of a radiopharmaceutical at a moment in time, or to be more precise, during the period of time which is required to accumulate the relevant data. The added value of a SPET study is that it provides a more precise geometric detail of the biodistribution of the radiopharmaceutical than planar imaging. In order to be able to take advantage of this it is desirable that the radiopharmaceutical should not be metabolised or transported in significant quantities during the data acquisition otherwise artifacts will ensue.


Medullary Thyroid Carcinoma Post Injection Regional Cerebral Blood Flow Effective Half Life Intact Blood Brain Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bull U von, et al. DSPECT.Förtschr Röntgenstr 1983;139:351–8.CrossRefGoogle Scholar
  2. 2.
    SubramanianG, McAfee JG, Blair RJ, et al. Technetium 99m methylene diphosphonate: Asuperior agent for Skeletal Imaging. J Nucl Med 1975;16:744–55.PubMedGoogle Scholar
  3. 3.
    Cox PH. Thepharmacological behaviour of Technetium in bone, bone marrow and joints. In:Cox PH ed.Progress in Radiopharmacology. Amsterdam: Elsevier, 1979: 109–27.Google Scholar
  4. 4.
    Schrijver M de. Scintigraphy ofinflammation with nanometer sized colloidal tracers. Dordrecht: Kluwer AcademicPublishers 1989: 67–87.CrossRefGoogle Scholar
  5. 5.
    Mclntyre PA.In:Subramanian G, Rhodes BA, Cooper JF, et al.Radiopharmaceuticals New York: VJ Society of Nuclear Medicine, 1975: 343–8.Google Scholar
  6. 6.
    Davies MA. Ibid:267–81.Google Scholar
  7. 7.
    Pillay M, Shapiro B. Practical aspects of lung ventilation studies with Aerosols. Nucl GeneeskBull 1984:4; 159–64 [in Dutch].Google Scholar
  8. 8.
    Pillay M,Akkermans JA and Cox PH. A high efficiency ultrasound nebuliser forradioaerosol studies of the lungs. Eur J Nucl Med 1987:14;400–2.Google Scholar
  9. 9.
    Durovnic N,Pillay M and Cox PH. The stability of 99m Tc DTPA and 99mTc HIDA following ultrasound nebulisation. Eur J Nucl Med 1988:14;400–2.Google Scholar
  10. 10.
    Cox PH. Technetium complexes for Renal scintigraphy. In: Progress inRadiopharmacology. PH Cox, ed. The Hague: Martinus Nijhoff 1982: 31–44.CrossRefGoogle Scholar
  11. 11.
    Fazio F, et al. Tomographic assessment of regional cerebral perfusion usingintravenous I-123 HIPDM. J Comput Assist Tomogr 1984:8;911–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Ell PJ, et al. Cerebral blood flow studies with Iodine-123 labelled amines.Lancet,1983: 1348–52.Google Scholar
  13. 13.
    Holman BL, etal. Biodistributionanddosimetry of N-Isopropyl-p-diiodoamphetamine in the primate. J Nucl Med1983:24;922–31.PubMedGoogle Scholar
  14. 14.
    Van Royen EA, etal.Cerebral blood flow imaging with Thallium 201 diethyldithiocarbamate. J NuclMed 1987:28; 178–83.PubMedGoogle Scholar
  15. 15.
    Volkert WA, et al.99m Tc propylene amine oxime a potential brain radiopharmaceutical.Eur J Nucl Med 1984:9;511–6.CrossRefPubMedGoogle Scholar
  16. 16.
    EuropeanPatent 0123504 B1, 1989.Google Scholar
  17. 17.
    Costa DC, etal.The in vivo distribution of 99m Tc HMPAO in normal man. Nucl Med Commun1986:7;647–58.PubMedGoogle Scholar
  18. 18.
    SharpFF, et al.Technetium 99m HMPAO sterioisomers as potential agents for imaging regionalcerebral blood flow. J Nucl Med 1986:27; 171–7.PubMedGoogle Scholar
  19. 19.
    Siccardi AG, etal.Technetium ECD a new brain imaging agent. J Nucl Med 1989:30;599–604.Google Scholar
  20. 20.
    LeveilleJ, etal.Characterisation of Technetium 99m ECD for brain perfusion imaging. J Nucl Med1989:30;902–1010.Google Scholar
  21. 21.
    GeorgeMS, etal.Neuroactivation and neuroimaging with SPET. London: Springer, 1991: 21.CrossRefGoogle Scholar
  22. 22.
    Bossuyt MS, etal.Tc99m MRF20 a new brain perfusion agent suitable for SPECT imaging. Eur J NuclMed 1990:16;418.Google Scholar
  23. 23.
    Verhoef NPLG, Pharmacological implications of neuroreceptor imaging. Eur J Nucl Med1991:18;482–502.CrossRefGoogle Scholar
  24. 24.
    Lebowitz E, etal.Thallium-201 for medical use. J Nucl Med 1975:16;151–55.PubMedGoogle Scholar
  25. 25.
    Cox PH. Thecomparative radiopharmacology of Thallium-201 in relation to Potassium. In: PHCox ed. Progress in Radiopharmacology. Amsterdam: Elsevier North Holland 1981:19–28.Google Scholar
  26. 26.
    Mohiuaddin SM, etal. Comparison of adenosine and exercise Thallium-201 single photon emissioncomputed tomography myocardial perfusion imaging. J Am Coll Cardiol1992:19;248–57.CrossRefGoogle Scholar
  27. 27.
    Pennel DJ, et al.Dobutamine Thallium myocardium perfusion tomography. J Am Coll Cardiol1991:18;1471–9.CrossRefGoogle Scholar
  28. 28.
    Quinones MA, etal. Exercise echocardiography versus Tl-201 single photon emission computedtomography in evaluation of coronary artery disease analysis of 292 patients.Circulation 1992:85; 1026–31.CrossRefPubMedGoogle Scholar
  29. 29.
    Holman BL, et al.A new Technetium-99m labelled myocardial imaging agenthexakis[t-butylisonitrile]. Initial experience in the Human. J Nucl Med1984:25; 1350–5.PubMedGoogle Scholar
  30. 30.
    Wackers FJT, etal. Technetium-99m hexakis 2 methoxyisobutylisonitrile: human biodistribution,dosimetry, safety and preliminary comparison to Thallium-201 for myocardialperfusion. J Nucl Med 1989:30;301–11.PubMedGoogle Scholar
  31. 31.
    Kahn JK, et al.Quantitative rotational tomography with Tl-201 and Tc-99m 2 methoxyisobutylnitrile. A direct comparison in normal individuals and in patients withcoronary artery disease. Circulation 1989:79; 1282–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Gibbons RJ, etal. Feasibility of tomographic 99m-Tc hexakis-2-methoxy-2-methylpropylisonitrile for the assessment of myocardial area at risk and theeffect of treatment in acute myocardial infarction. Circulation 1989:80;1277–86.CrossRefPubMedGoogle Scholar
  33. 33.
    Santoro GM, et al. Singlephoton emission computed tomography with Technetium-99mHexakis-2-methoxyisobutylnitrile in acute myocardial infarction before andafter thrombolytic treatment: Assessment of salvaged myocardium and prediction oflate functional recovery. J Am Coll Cardiol 1990:15;301–14.CrossRefPubMedGoogle Scholar
  34. 34.
    Narra RK, et al.A neutral Technetium-99m complex for myocardial imaging. J Nucl Med1989:30;1830–7.PubMedGoogle Scholar
  35. 35.
    Fleming RM, etal. Comparison of Technetium-99m terboroxime tomography with automatedquantitative coronary arteriography and Thallium-201 tomographic imaging. J AmColl Cardiol 1991:17;1297–1302.CrossRefPubMedGoogle Scholar
  36. 36.
    Henzlova MJ, andMachac J. Clinical utility of Technetium-99m terboroxime myocardial washoutimaging. J Nucl Med 1994:35;575–9.PubMedGoogle Scholar
  37. 37.
    Higley B, et al.Technetium-99m 1,2 bis[bis(2-ethoxyethyl)phosphino]ethane: humanbiodistribution, dosimetry and safety of a new myocardial imaging agent. J NuclMed 1993:34;30–8.PubMedGoogle Scholar
  38. 38.
    Jain D, et al.Biokinetics of Technetium-99m tetrofosmin: myocardial perfusion imaging agent:implications for a one day imaging protocol. J Nucl Med 1993:34;1254–9.PubMedGoogle Scholar
  39. 39.
    Rigo P, et al.Technetium-99m tetrofosmin myocardial imaging: a comparison with Thallium-201and angiography. J Nucl Med 1994:35;587–93.PubMedGoogle Scholar
  40. 40.
    Tamaki N, et al.Myocardial tomography using Technetium-99m tetrofosmin to evaluate coronaryartery disease. J Nucl Med 1994:35;594–600.PubMedGoogle Scholar
  41. 41.
    Khaw BA, et al.Specificity of localisation of myosin specific antibody fragments inexperimental myocardial infarction. Circulation 1979:60;1527–31.CrossRefPubMedGoogle Scholar
  42. 42.
    Idem. Myocardialdamage delineated by Indium-111 antimyosin Fab and Technetium-99mPyrophosphate. J Nucl Med 1987:28;76–82.Google Scholar
  43. 43.
    Bhattacharya S,Lahiri A. Antimyosin antibody imaging in myocardial infarction. In: Baum RP, et al ed. Clinicaluse of antibodies. Dordrecht: Kluwer Academic Publishers, 1991: 69–83.Google Scholar
  44. 44.
    Ell PJ, Khan O.The role of Technetium-99m Phosphates in the context of acute myocardialinfarction. In: PH Cox ed. Progress in Radiopharmacology 2. Amsterdam: ElsevierNorth Holland, 1981: 75–83.Google Scholar
  45. 45.
    Robinson JR, Lee AW. Radioiodinated fatty acids for heart imaging: iodine monochlorideaddition compared with iodine replacement labelling. J Nucl Med 1975:16;17–21.PubMedGoogle Scholar
  46. 46.
    Machulla HJ, et al. Comparativeevaluation of fatty acids labelled C-11,Cl-34m, Br-77,I-123 for metabolicstudies of myocardium. J Nucl Med 1978:19;298–302.PubMedGoogle Scholar
  47. 47.
    Machulla HJ, et al. Biochemicalconcepts and synthesis of radioiodinated phenylfatty acid for in vivo metabolicstudies of the myocardium. Eur J Nucl Med 1980:5; 171–3.CrossRefPubMedGoogle Scholar
  48. 48.
    Angelberger P, et al. 1–123 and1–131 labelled p-Iodophenylpentadecanoic acid [p-IPPA]: simplified preparation.Biodistribution in mice, rabbits and patients. In: PH Cox ed. Progress inRadiopharmacology 2.Amsterdam: Elsevier North Holland, 1981: 61–74.Google Scholar
  49. 49.
    CorbettJ. Clinical experience with Iodine-123 Iodophenylpentadecanoic acid. J Nucl Med1994:[suppl]32S–7S.Google Scholar
  50. 50.
    Vyska K, et al. Regionalmyocardial free fatty acid extraction in normal and ischaemic myocardium.Circulation 1988:78;1218–33.CrossRefPubMedGoogle Scholar
  51. 51.
    Hansen CL, et al.Iodine-123 phenylpentadecanoic acid and single photon emission computedtomography in identifying left ventricular regional metabolic abnormalities inpatients with coronary artery disease: comparison with Thallium-201 myocardialtomography. J Am Coll Cardiol 1988:12;78–87.CrossRefPubMedGoogle Scholar
  52. 52.
    Hoeflin F.Routine 18F-2-deoxy-2-fluoro-d-glucose myocardial tomography using a normallarge field of view gamma camera. Angiology 1989:40; 1058–64.CrossRefGoogle Scholar
  53. 53.
    Idem. Detectionof non-perfused, viable myocardium with 18F FDG using a specially designedgamma camera. A simple method to detect hibernating myocardium. Acta RadiolSuppl 1991:376;133–4.Google Scholar
  54. 54.
    Perkins AC, PimmMV. Immunoscintigraphy practical aspects and clinical applications. New York:Wiley Lisse, 1991: 193 [General reference].Google Scholar
  55. 55.
    Baum RP, et alEditors. Clinical use of antibodies. Dordrecht: Kluwer Academic Publishers,1991: 81.Google Scholar
  56. 56.
    Goldenberg DM.New developments in monoclonal antibodies for cancer detection and therapy. C ACancer J Clin 1994:44;43–64.CrossRefGoogle Scholar
  57. 57.
    Bakker WH.Radiopharmaceuticals for scintigraphy of somatostatin receptor positivetumours. Rotterdam: PhD Thesis Erasmus University 1992.Google Scholar
  58. 58.
    Krenning EP, etal. Localisation of endocrine related tumours with radioiodinated analogue ofsomatostatin. Lancet 1989:l;242–4.CrossRefGoogle Scholar
  59. 59.
    Lamberts SWJ, etal. Somatostatin receptor imaging in the localisation of endocrine tumours. N Eng J Med 1990:323; 1246–49.CrossRefGoogle Scholar
  60. 60.
    Hoefnagel CA, etal. Radionuclide diagnosis and therapy of neural crest tumours using Iodine-131metaiodobenzylguanidine. J Nucl Med 1987:28;308–14.PubMedGoogle Scholar
  61. 61.
    Hoefnagel CA, et al. Methodology and problems of single photon emission tomography using Iodine-131metaiodobenzylguanidine. Der Nuklearmediziner 1987: 4;317–23.Google Scholar
  62. 62.
    Hoefnagel CA, etal. Single photon emission tomography using meta-1311iodobenzylguanidine inmalignant pheochromocytoma and neuroblastoma: case reports. J Med Imaging1987:l;57–60.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

There are no affiliations available

Personalised recommendations