Skip to main content

Biosynthesis of Cyanobacterial Tetrapyrrole Pigments: Hemes, Chlorophylls, and Phycobilins

  • Chapter
The Molecular Biology of Cyanobacteria

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

Cyanobacteria are versatile tetrapyrrole synthesizers that are able to produce end products representing all major branches of the tetrapyrrole biosynthetic pathway: hemes, chlorophylls, phycobilins, and siroheme. Although tetrapyrrole biosynthesis has not been characterized as extensively in cyanobacteria as in plants and anoxygenic photosynthetic bacteria, recent studies of the biochemistry and molecular genetics of this pathway have begun to exploit the advantages of these oxygenic procaryotic organisms. The results of these studies are increasing our understanding of the biosynthetic enzyme reaction mechanisms, the physical properties of the enzymes, modes of metabolic regulation, the evolution of the pathway, and the phylogenetic relationships among cyanobacteria, other bacteria, algae, and plants. In this article, emphasis is placed on the individual enzymatic steps of tetrapyrrole biosynthesis in cyanobacteria, the natures of substrates, reaction intermediates, and products, the physical, kinetic, and regulatory properties of the enzymes, and the identification of genes that encode the enzymes. Because of the limited amount of available information that has been directly derived from cyanobacteria, results obtained from other organisms is discussed wherever it is likely to be applicable to cyanobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abboud MM and Akhtar M (1976) Stereochemistry of hydrogen elimination in the enzymatic formation of the C-2-C-3 double bond of porphobilinogen. J Chem Soc Chem Commun 1976: 1007–1008.

    Article  Google Scholar 

  • Adamson H, Walker C, Bees A and Griffiths T (1987) Proto-chlorophyllide reduction in Anabaena. In: Biggins J (ed) Progress in Photosynthesis Research, Vol. IV pp 483–486 Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Ajaz AA, Corina DL and Akhtar M (1985) The mechanism of the C-133 esterification step in the biosynthesis of bacterio-chlorophyll a. Eur J Biochem 150: 309–312.

    Article  PubMed  CAS  Google Scholar 

  • Apel K (1981) The protochlorophyllide holochrome of barley (Hordeum vulgare L.): phytochrome induced decrease of translatable mRNA coding for the NADPH, protochlorophyllide oxidoreductase. Eur J Biochem 120: 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Armstrong GA, Cook DN, Ma D, Alberti M, Burke DH and Hearst JE (1993) Regulation of carotenoid and bacterio-chlorophyll biosynthesis genes and identification of an evolutionarily conserved gene required for bacteriochlorophyll accumulation. J Gen Microbiol 139: 897–906.

    Article  PubMed  CAS  Google Scholar 

  • Avissar YJ (1980) Biosynthesis of 5-aminolevulinate from glutamate in Anabaena variabilis. Biochim Biophys Acta 613: 220–228.

    Article  PubMed  CAS  Google Scholar 

  • Avissar YJ and Beale SI (1989a) Identification of the enzymatic basis for δ-aminolevulinic acid auxotrophy in a hemA mutant of Escherichia coli. J Bacteriol 171: 2919–2924.

    PubMed  CAS  Google Scholar 

  • Avissar YJ and Beale SI (1989b) Biosynthesis of tetrapyrrole pigment precursors: pyridoxal requirement of the aminotransferase step in the formation of δ-aminolevulinate from glutamate in extracts of Chlorella vulgaris. Plant Physiol 89: 852–859.

    Article  PubMed  CAS  Google Scholar 

  • Avissar YJ and Beale SI (1990) Cloning and expression of a structural gene from Chlorobium vibrioforme that complements the hemA mutation in Escherichia coli. J Bacteriol 172: 1656–1659.

    PubMed  CAS  Google Scholar 

  • Batschauer A and Apel K (1984) An inverse control by phytochrome of the expression of two nuclear genes in barley. Eur J Biochem 143: 593–597.

    Article  PubMed  CAS  Google Scholar 

  • Battersby AR (1993) Biosynthesis of vitamin B12. Acc Chem Res 26: 15–21.

    Article  CAS  Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ and McDonald E (1979a) Order of assembly of the four pyrrole rings during biosynthesis of the natural porphyrins. J Chem Soc Chem Commun 1979: 539–541.

    Article  Google Scholar 

  • Battersby AR, Fookes CJR, Gustafson-Potter KE, Matcham GWJ and McDonald E (1979b) Proof by synthesis that unrearranged hydroxymethylbilane is the product from deaminase and the substrate for cosynthetase in the biosynthesis ofUro’gen-III. J Chem Soc Chem Commun 1979: 1155–1158.

    Article  Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ, McDonald E and Gustafson-Potter KE (1979c) Biosynthesis of the natural porphyrins: experiments on the ring-closure steps with the hydroxy-analogue of porphobilinogen. J Chem Soc Chem Commun 1979: 316–319.

    Article  Google Scholar 

  • Battersby AR, Fookes CJR, Matcham GWJ, McDonald E and Hollenstein R (1983) Biosynthesis of porphyrins and related molecules, part 20: purification of deaminase and studies on its mode of action. J Chem Soc Perkin Trans I 1983: 3031–3040.

    Article  Google Scholar 

  • Bauer CE, Bollivar DW and Suzuki JY (1993) Genetic analyses of photopigment biosynthesis in eubacteria: a guiding light for algae and plants. J Bacteriol 175: 3919–3925.

    PubMed  CAS  Google Scholar 

  • Bazzaz MB, Govindjee and Paolillo DJ Jr (1974) Biochemical, spectral and structural study of Olive Necrotic 8147 mutant of Zea mays L. Z Pflanzenphysiol 72: 181–192.

    CAS  Google Scholar 

  • Bazzaz MB, Bradley CV and Brereton RG (1982) 4-Vinyl-4-desethyl chlorophyll a: characterization of a new naturally occurring chlorophyll using fast atom bombardment, field desorption and “in beam” electron impact mass spectroscopy. Tet Lett 23: 1211–1214.

    Article  CAS  Google Scholar 

  • Beale SI and Castelfranco PA (1974a) The biosynthesis of δ-aminolevulinic acid in higher plants, I: accumulation of δ-aminolevulinic acid in greening plant tissues. Plant Physiol 53: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Castelfranco PA (1974b) The biosynthesis of δ-aminolevulinic acid in higher plants, II: formation of 14C-δ-aminolevulinic acid from labeled precursors in greening plant tissues. Plant Physiol 53: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1983) Biosynthesis of phycocyanobilin from exogenous labeled biliverdin in Cyanidium caldarium. Arch Biochem Biophys 227: 279–286.

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1984a) Enzymic transformation of biliverdin to phycocyanobilin by extracts of the unicellular red alga, Cyanidium caldarium. Plant Physiol 76: 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1984b) Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Arch Biochem Biophys 235: 371–384.

    Article  PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1991a) Biosynthesis of phycobilins: ferredoxin-mediated reduction of biliverdin catalyzed by extracts of Cyanidium caldarium. J Biol Chem 266: 22328–22332.

    PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1991b) Biosynthesis of phycobilins: 3(Z)-phycoerythrobilin and 3(Z)-phycocyanobilin are intermediates in the formation of 3(E)-phycocyanobilin from biliverdin IXα. J Biol Chem 266: 22333–22340.

    PubMed  CAS  Google Scholar 

  • Beale SI and Cornejo J (1991c) Biosynthesis of phycobilins: 15,16-dihydrobiliverdinIXαis a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J Biol Chem 266: 22341–22345.

    PubMed  CAS  Google Scholar 

  • Beale SI and Weinstein JD (1991) Biochemistry and regulation of photosynthetic pigment formation in plants and algae. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles pp 155–235 Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Beale SI, Gough SP and Granick S (1975) The biosynthesis of δ-aminolevulinic acid from the intact carbon skeleton of glutamic acid in greening barley. Proc Natl Acad Sci USA 72: 2719–2723.

    Article  PubMed  CAS  Google Scholar 

  • Becerril JM and Duke SO (1989) Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90: 1175–1181.

    Article  PubMed  CAS  Google Scholar 

  • Bednarik DP and Hoober JK (1985a) Biosynthesis of a chloro-phyllide b-like pigment in phenanthroline-treated Chlamy-domonas reinhardtii y-1. Arch Biochem Biophys 240: 369–379.

    Article  PubMed  CAS  Google Scholar 

  • Bednarik DP and Hoober JK (1985b) Synthesis of chlorophyllide b from protochlorophyllide in Chlamydomonas reinhardtii y-1. Science 230: 450–453.

    Article  PubMed  CAS  Google Scholar 

  • Bednarik DP and Hoober JK (1986) Chlorophyllide b synthesis in phenanthroline-treated Chlamydomonas reinhardtii y-1 in the dark. In: Akoyunoglou G and Senger H (eds) Regulation of Chloroplast Differentiation pp 105–114 Alan R. Liss, New York.

    Google Scholar 

  • Belanger FC and Rebeiz CA (1980) Chloroplast biogenesis, 30: chlorophyll(ide)(E459F675) and chlorophyll(ide)(E449F675) the first detectable products of divinyl and monovinyl protochlorophyll photoreduction. Plant Sci Lett 18: 343–350.

    Article  CAS  Google Scholar 

  • Belknap WR and Haselkorn R (1987) Cloning and light regulation of expression of the phycocyanin Operon of the cyanobacterium Anabaena. EMBO J 6: 871–884.

    PubMed  CAS  Google Scholar 

  • Benli M, Schulz R and Apel K (1991) Effect of light on the NADPH-protochlorophyllide oxidoreductase of Arabidopsis thaliana. Plant Mol Biol 16: 615–625.

    Article  PubMed  CAS  Google Scholar 

  • Benz J, Wolf C and Rüdiger W (1980) Chlorophyll biosynthesis: hydrogenation of geranylgeraniol. Plant Sci Lett 19: 225–230.

    Article  CAS  Google Scholar 

  • Biel AJ and Marrs BL (1983) Transcriptional regulation of several genes for bacteriochlorophyll biosynthesis on Rhodo-pseudomonas capsulata in response to oxygen. J Bacteriol 156: 686–694.

    PubMed  CAS  Google Scholar 

  • Bishop JE, Rapoport H, Klotz AV, Chan CF, Glazer AN, Füglistaller P and Zuber H (1987) Chromopeptides from phycoerythrocyanin: structure and linkage of the three bilin groups. J Am Chem Soc 109: 875–881.

    Article  CAS  Google Scholar 

  • Bishop NI and Wong J (1974) Photochemical characteristics of a vitamin E deficient mutant of Scenedesmus obliquus. Ber Deutsch Bot Gaz 87: 359–371.

    Google Scholar 

  • Boese QF, Spano AJ, Li J and Timko MP (1991) Aminolevulinic acid dehydratase in pea (Pisum sativum L.): identification of an unusual metal binding domain in the plant enzyme. J Biol Chem 266: 17060–17066.

    PubMed  CAS  Google Scholar 

  • Bogorad L (1960) The biosynthesis of protochlorophyll. In: Allen MB (ed) Comparative Biochemistry of Photoreactive Systems pp 227–256 Academic Press, New York.

    Google Scholar 

  • Bollivar DW (1993) Molecular-genetic and biochemical analysis ofbacteriochlorophyll biosynthesis in Rhodobacter capsulatus. PhD Thesis, Indiana University, Bloomington, Indiana.

    Google Scholar 

  • Bollivar DW and Bauer CE (1992) Nucleotide sequence of S-adenosyl-L-methionine:magnesium protoporphyrin methyl-transferase from Rhodobacter capsulatus. Plant Physiol 98: 408–410.

    Article  PubMed  CAS  Google Scholar 

  • Bollivar DW, Kiang Z-Y, Bauer CE and Beale SI (1994) Heterologous overexpression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltrans-ferase. J Bacteriol, in press.

    Google Scholar 

  • Brereton RG, Bazzaz MB, Santikarn S and Williams DH (1983) Positive and negative ion fast atom bombardment mass spectrometric studies on chlorophylls: structure of 4-vinyl-4-desethyl chlorophyll b. Tet Lett 24: 5775–5778.

    Article  CAS  Google Scholar 

  • Breu V and Dörnemann D (1988) Formation of 5-aminolevulinate via glutamate-1-semialdehyde and 4,5-dioxovalerate with participation of an RNA component in Scenedesmus obliquus mutant C-2A’. Biochim Biophys Acta 967: 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Brown SB, Holroyd JA, Troxler RF and Offner GD (1981) Bile pigment synthesis in plants: incorporation of haem into phycocyanobilin and phycobiliproteins in Cyanidium caldarium. Biochem J 194: 137–147.

    PubMed  CAS  Google Scholar 

  • Brown SB, Holroyd JA, Vernon DI and Jones OTG (1984a) Ferrochelatase activity in the photosynthetic alga Cyanidium caldarium: development of the enzyme during biosynthesis of photosynthetic pigments. Biochem J 220: 861–863.

    PubMed  CAS  Google Scholar 

  • Brown SB, Holroyd JA and Vernon DI (1984b) Biosynthesis of phycobiliproteins: incorporation of biliverdin into phycocyanin of the red alga Cyanidium caldarium. Biochem J 219: 905–909.

    PubMed  CAS  Google Scholar 

  • Brunt RD, Leeper FJ, Grgurina I and Battersby AR (1989) Biosynthesis of vitamin B12: synthesis of (±)-[5-13C]Faktor-1 ester: determination of the oxidation state of precorrin-1. J Chem Soc Chem Commun 1989: 428–431.

    Article  Google Scholar 

  • Bruyant P and Kannangara CG (1987) Biosynthesis of δ-aminolevulinate in greening barley leaves, VIII: purification and characterization of the glutamate-tRNA ligase. Carlsberg Res Commun 52: 99–109.

    Article  CAS  Google Scholar 

  • Bryant DA, Stirewalt VL, Glauser M, Frank G, Sidler W and Zuber H (1991) A small multigene family encodes the rod-core linker polypeptides of Anabaena sp. PCC7120 phycobili somes. Gene 107: 91–99.

    Article  PubMed  CAS  Google Scholar 

  • Bull AD, Breu V, Kannangara CG, Rogers LJ and Smith AJ (1990) Cyanobacterial glutamate 1-semialdehyde aminotransferase: requirement for pyridoxamine phosphate. Arch Microbiol 154: 56–59.

    Article  CAS  Google Scholar 

  • Burke DH, Alberti M, Armstrong GA and Hearst JE (1992) Unpublished results deposited in GenBank under accession number Z11165.

    Google Scholar 

  • Burke DH, Alberti M and Hearst JE (1993) bchFNBH bacterio-chlorophyll synthesis genes of Rhodobacter capsulatus and identification of the third subunit of light-independent protochlorophyllide reductase in bacteria and plants. J Bacteriol 175: 2414–2422.

    PubMed  CAS  Google Scholar 

  • Camadro J-M, Chambon H, Jolies J and Labbe P (1986) Purification and properties of coproporphyrinogen oxidase from the yeast Saccharomyces cerevisiae. Eur J Biochem 156: 579–587.

    Article  PubMed  CAS  Google Scholar 

  • Cameron B, Guilhot C, Blanche F, Cauchois L, Rouyez M-C, Rigault S, Levy-Schil S and Crouzet J (1991) Genetic and sequence analysis of a Pseudomonas denitrificans DNA fragment containing two cob genes. J Bacteriol 173: 6058–6065.

    PubMed  CAS  Google Scholar 

  • Carey EE and Rebeiz CA (1985) Chloroplast biogenesis 49: differences among angiosperms in the biosynthesis and accumulation of monovinyl and divinyl protochlorophyllide during photoperiodic greening. Plant Physiol 79: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Carey EE, Tripathy BC and Rebeiz CA (1985) Chloroplast biogenesis 51: modulation of monovinyl and divinyl protochlorophyllide biosynthesis by light and darkness in vitro. Plant Physiol 79: 1059–1063.

    Article  PubMed  CAS  Google Scholar 

  • Castelfranco PA, Weinstein JD, Schwarcz S, Pardo AD and Wezelman BE (1979) The Mg insertion step in chlorophyll biosynthesis. Arch Biochem Biophys 192: 592–598.

    Article  PubMed  CAS  Google Scholar 

  • Cavaleiro JAS, Kenner GW and Smith KM (1974) Pyrroles and related compounds, part XXXII: biosynthesis of protoporphyrin-IX from coproporphyrinogen-III. J Chem Soc Perkin Trans I 1974: 1188–1194.

    Article  Google Scholar 

  • Chang T-E, Wegmann B and Wang W-y (1990) Purification and characterization of glutamyl-tRNA synthetase: an enzyme involved in chlorophyll biosynthesis. Plant Physiol 93: 1641–1649.

    Article  PubMed  CAS  Google Scholar 

  • Chapman DJ, Cole WJ and Siegelman HW (1967) The structure of phycoerythrobilin. J Am Chem Soc 89: 5976–5977.

    Article  CAS  Google Scholar 

  • Chen M-W, Jahn D, Schön A, O’Neill GP and Söll D (1990) Purification of the glutamyl-tRNA reductase from Chlamy-domonas reinhardtii involved in δ-aminolevulinic acid formation during chlorophyll biosynthesis. J Biol Chem 265: 4058–4063.

    PubMed  CAS  Google Scholar 

  • Chen TC and Miller GW (1974) Purification and characterization of uroporphyrinogen decarboxylase from tobacco leaves. Plant Cell Physiol 15: 993–1005.

    CAS  Google Scholar 

  • Chereskin BA, Wong Y-S and Castelfranco PA (1982) In vitro synthesis of the chlorophyll isocyclic ring: transformation of magnesium-protoporphyrin IX and magnesium-protoporphyrin IX monomethyl ester into magnesium-2,4-divinyl pheoporphyrin a 5. Plant Physiol 70: 987–993.

    Article  PubMed  CAS  Google Scholar 

  • Choquet Y, Rahire M, Girard-Bascoe J, Erikson J and Rochaix J-D (1992) A chloroplast gene is required for the light-independent accumulation of chlorophyll in Chlamydomonas reinhardtii. EMBO J 11: 1697–1704.

    PubMed  CAS  Google Scholar 

  • Cole WJ, Chapman DJ and Siegelman HW (1967) The structure of phycocyanobilin. J Am Chem Soc 89: 3643–3645.

    Article  CAS  Google Scholar 

  • Conley PB, Lemaux PG and Grossman AR (1988) Molecular characterization and evolution of sequences encoding light harvesting components in the chromatically adapting cyano-bacterium Fremyella diplosiphon. J Mol Biol 199: 447–465.

    Article  PubMed  CAS  Google Scholar 

  • Coomber SA, Chaudhri M, Connor A, Britton G and Hunter CN (1990) Localized transposon Tn5 mutagenesis of the photo-synthetic gene cluster of Rhodobacter sphaeroides. Mol Microbiol 4: 977–989.

    Article  PubMed  CAS  Google Scholar 

  • Coomber SA, Jones RM, Jordan PM, and Hunter CN (1992) A putative anaerobic coproporphyrin III oxidase in Rhodobacter sphaeroides, I: molecular cloning, transposon mutagenesis, and sequence analysis of the gene. Mol Microbiol 6: 3159–3169.

    Article  PubMed  CAS  Google Scholar 

  • Cornejo J and Beale SI (1988) Algal heme oxygenase from Cyanidium caldarium: partial purification and fractionation into three required protein components. J Biol Chem 263: 11915–11921.

    PubMed  CAS  Google Scholar 

  • Crespi HL and Katz JJ (1969) Exchangeable hydrogen in phycoerythrobilin. Phytochemistry 8: 759–761.

    Article  CAS  Google Scholar 

  • Crespi HL, Boucher LJ, Norman GD, Katz JJ and Dougherty RC (1967) Structure of phycocyanobilin. J Am Chem Soc 89: 3642–3643.

    Article  CAS  Google Scholar 

  • Crockett N, Alefounder PR, Battersby AR and Abell C (1991) Uroporphyrinogen III synthase: studies on its mechanism of action, molecular biology and biochemistry. Tetrahedron 47: 6003–6014.

    Article  CAS  Google Scholar 

  • Crouzet J, Cauchois L, Blanche F, Debussche L, Thibaut D, Rouyez M-C, Rigault S, Mayaux J-F and Cameron B (1990) Nucleotide sequence of a Pseudomonas denitrificans 5.4-kilobase DNA fragment containing five cob genes and identification of structural genes encoding S-adenosylmeth-ionine:uroporphyrinogen III methyltransferase and cobyrinic acid a,c-diamide synthase. J Bacteriol 172: 45968–45979.

    Google Scholar 

  • Dailey TA, Meissner P and Dailey HA (1994) Expression of a cloned protoporphyrinogen oxidase. J Biol Chem, in press.

    Google Scholar 

  • Debussche L, Couder M, Thibaut D, Cameron B, Crouzet J and Blanche F (1992) Assay, purification, and characterization of cobaltochelatase, a unique complex enzyme catalyzing cobalt insertion in hydrogenobyrinic acid a,c-diamide during coenzyme B12 biosynthesis in Pseudomonas denitrificans. J Bacteriol 174: 7445–7451.

    PubMed  CAS  Google Scholar 

  • Deeg R, Kriemler H-P, Bergmenn K-H and Müller G (1977) Zue cobyrinsäure-Biosynthese: Neuartige, methylierte Hydropor-phyrine und deren Bedeutung bei der Cobyrinsäure-Bildung. Hoppe-Seyler’s Z Physiol Chemie 358: 339–352.

    Article  CAS  Google Scholar 

  • Dehesh K, Kreuz K and Apel K (1987) Chlorophyll synthesis in green leaves and isolated chloroplasts of barley (Hordeum vulgare). Physiol Plant 69: 173–181.

    Article  CAS  Google Scholar 

  • Dörnemann D, Kotzabasis K, Richter P, Breu V and Senger H (1989) The regulation of chlorophyll biosynthesis by the action of protochlorophyllide on glut-RNA-ligase. Bot Acta 102: 112–115.

    Google Scholar 

  • Douglas SE and Reith M (1993) A bchl homolog, encoding a subunit of Mg chelatase, is located on the plastid genomes of red and cryptomonad algae. J Mar Biotech (in press).

    Google Scholar 

  • Drygas ME, Lambowitz AM and Nargang FE (1989) Cloning and analysis of the Neurospora crassa gene for cytochrome c heme lyase. J Biol Chem 264: 17897–17906.

    PubMed  CAS  Google Scholar 

  • Dubbs JM and Bryant DA (1993) Organization and transcription of the genes encoding two differentially expressed phyco-cyanins in the cyanobacterium Pseudanabaena sp. PCC 7409. Photosynth Res 36: 169–183.

    Article  CAS  Google Scholar 

  • Duerring M, Schmidt GB and Huber R (1991) Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 Å resolution. J Mol Biol 217: 557–592.

    Article  Google Scholar 

  • Dumont ME, Ernst JF, Hampsey DM and Sherman F (1987) Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae. EMBO J 6: 235–241.

    PubMed  CAS  Google Scholar 

  • Elder GH, Evans JO, Jackson JR and Jackson AH (1978) Factors determining the sequence of oxidative decarboxylation of the 2-and 4-propionate substituents of coproporphyrinogen III by coproporphyrinogen oxidase in rat liver. Biochem J 169: 215–223.

    PubMed  CAS  Google Scholar 

  • Elliott T, Avissar YJ, Rhie G and Beale SI (1990) Cloning and sequence of the Salmonella typhimurium hemL gene and identification of the missing enzyme in hemL mutants as glutamate-1-semialdehyde aminotransferase. J Bacteriol 172: 7071–7084.

    PubMed  CAS  Google Scholar 

  • Ellsworth RK and Hsing AS (1973) The reduction of vinyl side-chains of Mg-protoporphyrin IX monomethyl ester in vitro. Biochim Biophys Acta 313: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Ellsworth RK, Dullaghan JP and St. Pierre ME (1974) The reaction mechanism of S-adenosyl-L-methionine:magnesium protoporphyrin IX methyltransferase of wheat. Photosynthetica 8: 375–383.

    Google Scholar 

  • Emery VC and Akhtar M (1985) Mechanistic studies on the phytylation step in bacteriochlorophyll a biosynthesis: an application of the 18O induced isotope effect in 13C N.M.R. spectroscopy. J Chem Soc Chem Commun 1985: 600–601.

    Article  Google Scholar 

  • Enosawa S and Ohashi A (1986) Localization of enzyme for heme attachment to apocytochrome c in yeast mitochondria. Biochem Biophys Res Commun 141: 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  • Fairchild CD, Zhao J, Zhou J, Colson SE, Bryant DA and Glazer AN (1992) Phycocyanin α-subunit phycocyanobilin lyase. Proc Natl Acad Sci USA 89: 7017–7021.

    Article  PubMed  CAS  Google Scholar 

  • Ford C and Wang W-y (1980) Temperature-sensitive yellow mutants of Chlamydomonas reinhardtii. Mol Gen Genet 180: 5–10.

    Article  Google Scholar 

  • Ford C, Mitchell S and Wang W-y (1981) Protochlorophyllide photoconversion mutants in Chlamydomonas reinhardtii. Mol Gen Genet 184: 460–464.

    Article  CAS  Google Scholar 

  • Ford C, Mitchell S and Wang W-y (1983) Characterization of NADPH:rotochlorophyllide oxidoreductase in the y-7 and pc-1 y-7 mutants of Chlamydomonas reinhardtii. Mol Gen Genet 192: 290–292.

    Article  CAS  Google Scholar 

  • Friedmann HC, Duban ME, Valasinas A and Frydman B (1992) The enantioselective participation of (S)-and (R)-diamino-valeric acids in the formation of δ-aminolevulinic acid in cyanobacteria. Biochem Biophys Res Commun 185: 60–68.

    Article  PubMed  CAS  Google Scholar 

  • Frustaci JM and O’Brian MR (1992) Characterization of a Bradyrhizobiumjaponicum ferrochelatase mutant and isolation of the hemH gene. J Bacteriol 174: 4223–4229.

    PubMed  CAS  Google Scholar 

  • Frustaci JM and O’Brian MR (1993) The Escherichia coli visA gene encodes ferrochelatase, the final enzyme of the heme biosynthetic pathway. J Bacteriol 175: 2154–2156.

    PubMed  CAS  Google Scholar 

  • Fu E, Friedman L and Siegelman HW (1979) Mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin. Biochem J 179: 1–6.

    PubMed  CAS  Google Scholar 

  • Fuesler TP, Wong Y-S and Castelfranco PA (1984) Localization of Mg-chelatase and Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase activities within isolated, developing cucumber chloroplasts. Plant Physiol 75: 662–664.

    Article  PubMed  CAS  Google Scholar 

  • Fujita Y, Takahashi Y, Chuganji M and Matsubara H (1992) The nifH-like (frxC) gene is involved in the biosynthesis of chlorophyll in the filamentous cyanobacterium Plectonema boryanum. Plant Cell Physiol 33: 81–92.

    CAS  Google Scholar 

  • Fujita Y, Matsumoto H, Takahashi Y and Matsubara H (1993) Identification of a nifDK-like gene (ORF467) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 34: 305–314.

    PubMed  CAS  Google Scholar 

  • Gisselmann G, Klausmeier P and Schwenn JD (1993) The ferredoxin:sulfite reductase gene from Synechococcus PCC 7942. Biochim Biophys Acta 1144: 102–106.

    Article  PubMed  CAS  Google Scholar 

  • Glauser M, Stirewalt VL, Bryant DA, Sidler W and Zuber H (1992) Structure of the genes encoding the rod-core linker polypeptides of Mastigocladus laminosus phycobilisomes and functional aspects of the phycobiliprotein/linker-polypeptide interactions. Eur J Biochem 205: 927–937.

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN and Hixson CS (1977) Subunit structure and chromophore composition of Rhodophytan phycoerythrins: Porphyridium cruentum B-phycoerythrin and b-phycoerythrin. J Biol Chem 252: 32–42.

    PubMed  CAS  Google Scholar 

  • Goericke R and Repeta DJ (1992) The pigments of Prochlor-ococcus marinus: the presence of divinyl chlorophyll a and b in a marine prokaryote. Limnol Oceanogr 37: 425–433.

    Article  CAS  Google Scholar 

  • Goldin BR and Little HN (1969) Metalloporphyrin chelatase activity from barley. Biochim Biophys Acta 171: 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Goldman BS and Roth JR (1993) Genetic structure and regulation of the cysG gene in Salmonella typhimurium. J Bacteriol 175: 1457–1466.

    PubMed  CAS  Google Scholar 

  • Gorchein A (1972) Magnesium protoporphyrin chelatase activity in Rhodopseudomonas sphaeroides: studies with whole cells. Biochem J 127: 97–106.

    PubMed  CAS  Google Scholar 

  • Gorchein A, Gibson LCD and Hunter CN (1993) Gene expression and control of enzymes for synthesis of magnesium protoporphyrin monomethyl ester in Rhodobacter sphaeroides. Biochem Soc Trans 21: 201S.

    PubMed  CAS  Google Scholar 

  • Gossauer A, Nydegger F, Benedikt E and Köst H-P (1989) Synthesis of bile pigments, XVI: synthesis of a vinyl substituted 2,3-dihydrobilindione: possible role of this new class of bile pigments in phycobilin biosynthesis. Helv Chim Acta 72: 518–529.

    Article  CAS  Google Scholar 

  • Gough SP and Kannangara CG (1977) Synthesis of δ-amino-levulinate by a chloroplast stroma preparation from greening barley leaves. Carlsberg Res Commun 42: 459–464.

    Article  CAS  Google Scholar 

  • Gough SP, Kannangara CG and Bock K (1989) A new method for the synthesis of glutamate 1-semialdehyde: characterization of its structure in solution by NMR spectroscopy. Carlsberg Res Commun 54: 99–108.

    Article  CAS  Google Scholar 

  • Granick S (1950) The structural and functional relationships between heme and chlorophyll. Harvey Lect 44: 220–245.

    Google Scholar 

  • Griffiths WT (1974) Protochlorophyll and protochlorophyllide as precursors for chlorophyll synthesis in vitro. FEBS Lett 49: 196–200.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths WT and Jones OTG (1975) Magnesium 2,4-divinyl-phaeoporphyrin a 5 as a substrate for chlorophyll biosynthesis in vitro. FEBS Let 50: 355–358.

    CAS  Google Scholar 

  • Grimm B (1992) Identification of a hemA gene from Synecho-cystis by complementation of an E. coli hemA mutant. Hereditas 117: 195–197.

    Article  PubMed  CAS  Google Scholar 

  • Grimm B, Bull A, Welinder KG, Gough SP and Kannangara CG (1989) Purification and partial amino acid sequence of the glutamate 1-semialdehyde aminotransferase of barley and Synechococcus. Carlsberg Res Commun 54: 67–79.

    Article  PubMed  CAS  Google Scholar 

  • Grimm B, Bull A and Breu V (1991a) Structural genes of glutamate 1-semialdehyde aminotransferase for porphyrin synthesis in a cyanobacterium and Escherichia coli. Mol Gen Genet 225: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Grimm B, Smith AJ, Kannangara CG and Smith M (1991b) Gabaculine-resistant glutamate 1-semialdehyde aminotransferase of Synechococcus: deletion of a tripeptide close to the NH2 terminus and internal amino acid substitution. J Biol Chem 266: 12495–12501.

    PubMed  CAS  Google Scholar 

  • Grimm B, Smith MA and von Wettstein D (1992) The role of Lys272 in the pyridoxal 5-phosphate active site of Synechococcus glutamate-1-semialdehyde aminotransferase. Eur J Biochem 206: 579–585.

    Article  PubMed  CAS  Google Scholar 

  • Guikema JA and Sherman LA (1983) Organization and function of chlorophyll in membranes of cyanobacteria during iron starvation. Plant Physiol 73: 250–256.

    Article  PubMed  CAS  Google Scholar 

  • Häfele U, Scherer S and Böger P (1988) Cytochrome aain3 from heterocysts of the cyanobacterium Anabaena variabilis: isolation and spectral characterization. Biochim Biophys Acta 934: 186–190.

    Article  Google Scholar 

  • Hansson M and Hederstedt L (1992) Cloning and characterization of the Bacillus subtilis hemEYH gene cluster, which encodes protoheme IX biosynthetic enzymes. J Bacteriol 174: 8081–8093.

    PubMed  CAS  Google Scholar 

  • Hansson M and von Wachenfeldt C (1993) Heme b (protoheme IX) is a precursor of heme a and heme d in Bacillus subtilis. FEMS Microbiol Lett 107: 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Hansson M, Rutberg L, Schröder I and Hederstedt (1991) The Bacillus subtilis hemAXCDBL gene cluster, which encodes enzymes of the biosynthetic pathway from glutamate to uroporphyrinogen III. J Bacteriol 173: 2590–2599.

    PubMed  CAS  Google Scholar 

  • Hart GJ and Battersby AR (1985) Purification and properties of uroporphyrinogen III synthase (co-synthase) from Euglena gracilis. Biochem J 232: 151–160.

    PubMed  CAS  Google Scholar 

  • Hart GJ, Miller AD, Leeper FJ and Battersby AR (1987) Biosynthesis of natural porphyrins: proof that hydroxy-methylbilane synthase (porphobilinogen deaminase) uses a novel binding group in its catalytic action. J Chem Soc Chem Commun 1987: 1762–1765.

    Article  Google Scholar 

  • Helfrich M and Rüdiger W (1992) Various metallopheophorbides as substrates for chlorophyll synthetase. Z Naturforsch 47c: 231–238.

    Google Scholar 

  • Henry A, Powls R and Pennock JF (1986) Scenedesmus obliquus PS28: a tocopherol-free mutant which cannot form phytol. Biochem Soc Trans 14: 958–959.

    CAS  Google Scholar 

  • Higuchi M and Bogorad L (1975) The purification and properties of uroporphyrinogen I synthases and uroporphyrinogen III cosynthase: interactions between the enzymes. Ann N Y Acad Sci 244: 401–418.

    Article  PubMed  CAS  Google Scholar 

  • Hinchigeri SB, Nelson DW and Richards WR (1984) The purification and reaction mechanism of S-adenosyl-L-methionine, magnesium protoporphyrin methyltransferase from Rhodopseudomonas sphaeroides. Photosynthetica 18: 168–178.

    CAS  Google Scholar 

  • Hoober JK, Kahn A, Ash D, Gough S and Kannangara CG (1988) Biosynthesis of δ-aminolevulinate in greening barley leaves, IX: structure of the substrate, mode of gabaculine inhibition, and the catalytic mechanism of glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 53: 11–25.

    Article  PubMed  CAS  Google Scholar 

  • Houchins JP and Hind G (1984) Concentration and function of membrane-bound cytochromes in cyanobacterial heterocysts. Plant Physiol 76: 456–460.

    Article  PubMed  CAS  Google Scholar 

  • Houen G, Gough SP and Kannangara CG (1983) δ-Amino-levulinate synthesis in greening barley, V: the structure of glutamate 1-semialdehyde. Carlsberg Res Commun 48: 567–572.

    Article  CAS  Google Scholar 

  • Huang D-D and Wang W-Y (1986) Chlorophyll synthesis in Chlamydomonas starts with the formation of glutamyl-tRNA. J Biol Chem 261: 13451–13455.

    PubMed  CAS  Google Scholar 

  • Huang DD, Wang W-Y, Gough SP and Kannangara CG (1984) δ-Aminolevulinic acid-synthesizing enzymes need an RNA moiety for activity. Science 225: 1482–1484.

    Article  PubMed  CAS  Google Scholar 

  • Hudson A, Carpenter R, Doyle S and Coen ES (1993) Olive: a key gene required for chlorophyll biosynthesis in Antirrhinum majus. EMBO J 12: 3711–3719.

    PubMed  CAS  Google Scholar 

  • Ilag LL and Jahn D (1992) Activity and spectroscopic properties of the Escherichia coli glutamate 1-semialdehyde aminotransferase and the putative active site mutant K265R. Biochemistry 31: 7143–7151.

    Article  PubMed  CAS  Google Scholar 

  • Ilag LL, Jahn D, Eggertsson G and Söll D (1991) The Escherichia coli hemL gene encodes glutamate 1-semialdehyde aminotransferase. J Bacteriol 173: 3408–3413.

    PubMed  CAS  Google Scholar 

  • Jacobs JM and Jacobs, NJ (1987) Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis: purification and partial characterization of the enzyme from barley organelles. Biochem J 244: 219–224.

    PubMed  CAS  Google Scholar 

  • Jahn D (1992) Complex formation between glutamyl-tRNA synthetase and glutamyl-tRNA reductase during tRNA-dependent synthesis of 5-aminolevulinic acid in Chlamydomonas. FEBS Lett 314: 77–80.

    Article  PubMed  CAS  Google Scholar 

  • Jahn D, Michelsen U and Söll D (1991) Two glutamyl-tRNA reductase activities in Escherichia coli. J Biol Chem 266 2542–2548.

    PubMed  CAS  Google Scholar 

  • Jahn D, Verkamp E and Söll D (1992) Glutamyl-transfer RNA: a precursor of heme and chlorophyll biosynthesis. Trends Biochem Sci 17: 215–218.

    Article  PubMed  CAS  Google Scholar 

  • Jones OTG (1968) Ferrochelatase of spinach chloroplasts. Biochem J 107: 113–119.

    PubMed  CAS  Google Scholar 

  • Jordan PM (1990) The biosynthesis of 5-aminolevulinic acid and its transformation into coproporphyrinogen in animals and bacteria. In: Dailey HA (ed) Biosynthesis of Heme and Chlorophylls pp 55–121 McGraw-Hill, New York.

    Google Scholar 

  • Jordan PM (1991) The biosynthesis of 5-aminolaevulinic acid and its transformation into uroporphyrinogen III. In: Jordan PM (ed) Biosynthesis of Tetrapyrroles pp 1–66 Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Jordan PM and Berry A (1981) Mechanism of action of porphobilinogen deaminase: the participation of stable enzyme substrate covalent intermediates between porphobilinogen and the porphobilinogen deaminase from Rhodopseudomonas sphaeroides. Biochem J 195: 177–181.

    PubMed  CAS  Google Scholar 

  • Jordan PM and Seehra JS (1979) The biosynthesis of uroporphyrinogen III: order of assembly of the four porphobilinogen molecules in the formation of the tetrapyrrole ring. FEBS Lett 104: 364–366.

    Article  PubMed  CAS  Google Scholar 

  • Jordan PM and Seehra JS (1980) Mechanism of action of 5-aminolevulinic acid dehydratase: stepwise order of addition of the two molecules of 5-aminolevulinic acid in the enzymic synthesis of porphobilinogen. J Chem Soc Chem Commun 1980: 240–242.

    Article  Google Scholar 

  • Jordan PM and Warren MJ (1987) Evidence for a dipyrromethane cofactor at the catalytic site of E. coli porphobilinogen deaminase. FEBS Lett 225: 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Jordan PM, Mgbeje IAB, Thomas SD and Alwan AF (1988) Nucleotide sequence for the hemD gene of Escherichia coli encoding uroporphyrinogen III synthase and initial evidence for a hem Operon. Biochem J 249: 613–616.

    PubMed  CAS  Google Scholar 

  • Jordan PM, Cheung K-M, Sharma RP and Warren MJ (1993) 5-amino-6-hydroxy-3,4,5,6-tetrahydropyran-2-one (HAT): a stable, cyclic form of glutamate 1-semialdehyde, the natural precursor for tetrapyrroles. Tet Lett 34: 1177–1180.

    Article  CAS  Google Scholar 

  • Joyard J, Block M, Pineau B, Albrieux C and Douce R (1990) Envelope membranes from mature spinach chloroplasts contain a NADPH:protochlorophyllide reductase on the cytosolic side of the outer membrane. J Biol Chem 265: 21820–21827.

    PubMed  CAS  Google Scholar 

  • Juknat AA, Seubert A, Seubert S and Ippen H (1989) Studies on uroporphyrinogen decarboxylase of etiolated Euglena gracilis Z. Eur J Biochem 179: 423–428.

    Article  PubMed  CAS  Google Scholar 

  • Kannangara CG and Gough SP (1978) Biosynthesis of δ-amino-levulinate in greening barley leaves: glutamate 1-semialdehyde aminotransferase. Carlsberg Res Commun 43: 185–194.

    Article  CAS  Google Scholar 

  • Kannangara CG and Schouboe A (1985) Biosynthesis of δ-aminolevulinate in greening barley leaves, VII: glutamate 1-semialdehyde accumulation in gabaculine treated leaves. Carlsberg Res Commun 50: 179–191.

    Article  CAS  Google Scholar 

  • Kannangara CG, Gough SP, Oliver RP and Rasmussen SK (1984) Biosynthesis of δ-aminolevulinate in greening barley leaves, VI: activation of glutamate by ligation to RNA. Carlsberg Res Commun 49: 417–437.

    Article  CAS  Google Scholar 

  • Kannangara CG, Gough SP, Bruyant P, Hoober JK, Kahn A and von Wettstein D (1988) tRNAGlu as a cofactor in δ-amino-levulinate biosynthesis: steps that regulate chlorophyll synthesis. Trends Biochem Sci 13: 139–143.

    Article  PubMed  CAS  Google Scholar 

  • Kiel JAKW, Boels JM, Beldman G and Venema G (1990) Nucleotide sequence of the Synechococcus sp. PCC7942 branching enzyme gene (glgB):expression in Bacillus subtilis. Gene 89: 77–84.

    Article  PubMed  CAS  Google Scholar 

  • Kipe-Nolt JA and Stevens SE Jr (1980) Biosynthesis of δ-aminolevulinic acid from glutamate in Agmenellum quadru-plicatum. Plant Physiol 65: 126–128.

    Article  PubMed  CAS  Google Scholar 

  • Kittsteiner U, Paulsen H, Schendel R and Rüdiger W (1990) Lack of light regulation of NADPH protochlorophyllide oxido-reductase mRNA in cress seedlings (Lepidium sativum L.). Z Naturforsch 45c: 1077–1079.

    Google Scholar 

  • Kittsteiner U, Mostowska A and Rüdiger W (1991) The greening process in cress seedlings, I: pigment accumulation and ultrastructure after application of 5-aminolevulinate and complexing agents. Physiol Plant 81: 139–147.

    Article  CAS  Google Scholar 

  • Klem DJ and Barton LL (1987) Purification and properties of protoporphyrinogen oxidase from an anaerobic bacterium, Desulfovibrio gigas. J Bacteriol 169: 5209–5215.

    Google Scholar 

  • Knaust R, Seyfried B, Schmidt L, Schulz R and Senger H (1993) Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH:protochlorophyllideoxidoreductase of barley expressed in Escherichia coli. J Photochem Photobiol B20: 161–166.

    Google Scholar 

  • Kobayashi M, Watanabe T, Nakazato M, Ikegami I, Hiyama T, Matsunaga T and Murata N (1988) Chlorophyll a/P-700 and pheophytin a/P-680 stoichiometrics in higher plants and cyanobacteria determined by HPLC analysis. Biochim Biophys Acta 936: 81–89.

    Article  CAS  Google Scholar 

  • Koguchi O and Tamura G (1988) Ferredoxin-sulfite reductase from a cyanobacterium, Spirulina platensis. Agric Biol Chem 52: 373–380.

    Article  CAS  Google Scholar 

  • Kotzabasis K and Senger H (1989) Biosynthesis of chlorophyll b in pigment mutant C-2A’ of Scenedesmus obliquus. Physiol Plant 76: 474–478.

    Article  CAS  Google Scholar 

  • Laycock MV and Wright JCC (1981) The biosynthesis of phycocyanobilin in Anacystis nidulans. Phytochemistry 20: 1265–1268.

    Article  CAS  Google Scholar 

  • Lee HJ, Ball MD, Parham R and Rebeiz CA (1992) Chloroplast biogenesis 65: enzymic conversion of protoporphyrin IX to Mg-protoporphyrin IX in a subplastidic membrane fraction of cucumber etiochloroplasts. Plant Physiol 99: 1134–1140.

    Article  PubMed  CAS  Google Scholar 

  • Leong SA, Ditta GS and Helinski DR (1982) Heme biosynthesis in Rhizobium: identification of a cloned gene coding for δ-aminolevulinic acid synthetase from Rhizobium meliloti. J Biol Chem 257: 8724–8730.

    PubMed  CAS  Google Scholar 

  • Li J-M, Brathwaite O, Cosloy SD and Russell CS (1989) 5-Aminolevulinic acid synthesis in Escherichia coli. J Bacteriol 171: 2547–2552.

    PubMed  CAS  Google Scholar 

  • Li J, Goldschmidt-Clermont M and Timko MP (1993) Chloroplast-encoded chlB is required for light-independent protochlorophyllide reductase in Chlamydomonas reinhardtii. Plant Cell 5: 1817–1829.

    PubMed  CAS  Google Scholar 

  • Lidholm J and Gustafsson P (1991) Homologues of the green algal gidA gene and the liverwort frxC gene are present on the chloroplast genomes of conifers. Plant Mol Biol 17: 787–798.

    Article  PubMed  CAS  Google Scholar 

  • Liu X-Q, Xu H and Huang C (1993) Chloroplast chlb gene is required for light-independent chlorophyll accumulation in Chlamydomonas reinhardtii. Plant Mol Biol 23: 297–308.

    Article  PubMed  CAS  Google Scholar 

  • Louie GV, Brownlie PD, Lambert R, Cooper JB, Blundell TL, Wood SP, Warren MJ, Woodcock SC and Jordan PM (1992) Structure of porphobilinogen deaminase reveals a flexible multidomain polymerase with a single catalytic site. Nature 359: 33–39.

    Article  PubMed  CAS  Google Scholar 

  • Luo J and Lim CK (1993) Order of uroporphyrinogen III decarboxylation on incubation of porphobilinogen and uroporphyrinogen III with erythrocyte uroporphyrinogen decarboxylase. Biochem J 289: 529–532.

    PubMed  CAS  Google Scholar 

  • Luque I, Flores E and Herrero A (1993) Nitrite reductase gene from Synechococcus sp. PCC 7942: homology between cyanobacterial and higher plant nitrite reductases. Plant Mol Biol 21: 1201–1205.

    Article  PubMed  CAS  Google Scholar 

  • Lütz C, Benz J and Rüdiger W (1981) Esterification of chlorophyllide in prolamellar body (PLB) and prothylakoid (PT) fractions from Avena sativa etioplasts. Z Naturforsch 36c: 58–61.

    Google Scholar 

  • Madsen O, Sandal L, Sandal NN and Marcker KA (1993) A soybean coproporphyrinogen oxidase gene is highly expressed in root nodules. Plant Mol Biol 23: 35–43.

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Watanabe T and Kobayashi M (1992) Assay of photosynthetic reaction centres by HPLC quantitation of chlorophyll a′ and pheophytin a: application to the chromatic regulation of photosystem stoichiometry in cyanophytes. J Photochem Photobiol B 13: 267–274.

    Article  CAS  Google Scholar 

  • Majumdar D, Avissar YJ, Wyche JH and Beale SI (1991) Structure and expression of the Chlorobium vibrioforme hemA gene. Arch Microbiol 156: 281–289.

    Article  PubMed  CAS  Google Scholar 

  • Mapleston ER and Griffiths WT (1980) Light modulation of the activity of protochlorophyllide reductase. Biochem J 189: 125–133.

    PubMed  CAS  Google Scholar 

  • Matringe M, Camadro J-M, Labbe P and Scalla R (1989) Protoporphyrinogen oxidase as a molecular target for diphenyl ether herbicides. Biochem J 260: 231–235.

    PubMed  CAS  Google Scholar 

  • Mau Y-HL and Wang W-Y (1988) Biosynthesis of δ-aminolevulinic acid in Chlamydomonas reinhardtii: study of the transamination mechanism using specifically labeled glutamate. Plant Physiol 86: 793–797.

    Article  PubMed  CAS  Google Scholar 

  • Mayer SM, Weinstein JD and Beale SI (1987) Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of Euglena gracilis. J Biol Chem 262: 12541–12549.

    PubMed  CAS  Google Scholar 

  • Mayer SM, Gawlita E, Avissar YJ, Anderson VE and Beale SI (1993a) Intermolecular nitrogen transfer in the enzymatic conversion of glutamate to δ-aminolevulinic acid by extracts of Chlorella vulgaris. Plant Physiol 101: 1029–1038.

    Article  PubMed  CAS  Google Scholar 

  • Mayer SM, Rieble S and Beale SI (1993b) Magnesium is required for glutamyl-tRNA reductase activity in extracts of Chlorella vulgaris and Synechocystis sp. PCC 6803. Plant Physiol 101:S47.

    Article  Google Scholar 

  • Mazel D and Marliére P (1989) Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteins. Nature 341: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • McKie J, Lucas C and Smith A (1981) δ-Aminolaevulinate biosynthesis in the cyanobacterium Synechococcus 6301. Phytochemistry 20: 1547–1549.

    Article  CAS  Google Scholar 

  • Meller E and Harel E (1978) The pathway of 5-aminolevulinic acid synthesis in Chlorella vulgaris and in Fremyella diplosiphon. In: Akoyunoglou G and Argyroudi-Akoyunoglou JH (eds) Chloroplast Development pp 51–57 Elsevier, Amsterdam.

    Google Scholar 

  • Meller E, Belkin S and Harel E (1975) The biosynthesis of δ-aminolevulinic acid in greening maize leaves. Phytochemistry 14: 2399–2402.

    Article  CAS  Google Scholar 

  • Mitchell LW and Jaffe EJ (1993) Porphobilinogen synthase from Escherichia coli is a Zn(II) metalloenzyme stimulated by Mg(II). Arch Biochem Biophys 300: 169–177.

    Article  PubMed  CAS  Google Scholar 

  • Miyamoto K, Nakahigashi K, Nishimura K and Inokuchi H (1991) Isolation and characterization of visible light-sensitive mutants of Escherichia coli K12. J Mol Biol 219: 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Molitor V, Trnka M and Peschek GA (1987) Isolated and purified plasma and thylakoid membranes of the cyanobacterium Anacystis nidulans contain immunologically cross-reactive aain3-type cytochrome oxidase. Cur Microbiol 14: 263–268.

    Article  CAS  Google Scholar 

  • Mombelli L, McDonald E and Battersby AR (1976) Enzymatic formation of a tricarboxylic porphyrin and protoporphyrin-XIII from coprogen-IV. Tet Lett 1976: 1037–1040.

    Article  Google Scholar 

  • Murakami K, Hashimoto Y and Murooka Y (1993) Cloning and characterization of the gene encoding glutamate 1-semial-dehyde 2,1-aminomutase, which is involved in δ-aminolevulinic acid synthesis in Propionibacterium freudenreichii. Appl Environ Microbiol 59: 347–350.

    PubMed  CAS  Google Scholar 

  • Nargang FE, Drygas ME, Kwong PL, Nicholson DW and Neupert W (1988) A mutant of Neurospora crass a deficient in cytochrome c heme lyase activity cannot import cytochrome c into mitochondria. J Biol Chem 263: 9388–9394.

    PubMed  CAS  Google Scholar 

  • Nasrulhaq-Boyce A, Griffiths WT and Jones OTG (1987) The use of continuous assays to characterize the oxidative cyclase that synthesizes the chlorophyll isocyclic ring. Biochem J 243: 23–29.

    PubMed  CAS  Google Scholar 

  • Nicholson DW and Neupert W (1989) Import of cytochrome c into mitochondria: reduction of heme, mediated by NADH and flavin nucleotides, is obligatory for its covalent linkage to apocytochrome c. Proc Natl Acad Sci USA 86: 4340–4344.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson DW, Köhler H and Neupert W (1987) Import of cytochrome c into mitochondria: cytochrome c lyase. Eur J Biochem 164: 147–157.

    Article  PubMed  CAS  Google Scholar 

  • O’Brian MR, Kirshbom PM and Maier RJ (1987) Bacterial heme synthesis is required for expression of the leghemoglobin holoprotein but not the apoprotein in soybean root nodules. Proc Natl Acad Sci USA 84: 8390–8393.

    Article  PubMed  Google Scholar 

  • Ogura Y, Takemura M, Yamato K, Ohta E, Fukuzawa H and Ohyama K (1992) Cloning and nucleotide sequence of a frxC-ORF469 gene cluster of Synechocystis PCC6803—conservation with liverwort chloroplast frxC-orf465 and nif operon. Biosci Biotechnol Biochem 56: 788–793.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki T, Takeuchi M, Chang Z, Aota S-I, Inokuchi H and Ozeki H (1986) Chloroplast gene organization deduced from the complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572–574.

    Article  CAS  Google Scholar 

  • Omata T (1991) Cloning and characterization of the nrtA gene that encodes a 45-kDa protein involved in nitrate transport in the cyanobacterium Synechococcus PCC 7942. Plant Cell Physiol 32: 151–157.

    CAS  Google Scholar 

  • O’Neill GP and Söll D (1990) Expression of the Synechocystis sp. PCC 6803 tRNAGlu gene provides tRNA for protein and chlorophyll biosynthesis. J Bacteriol 172: 6363–6371.

    Google Scholar 

  • O’Neill GP, Peterson DM, Schön A, Chen M-W and Söll D (1988) Formation of the chlorophyll precursor δ-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species. J Bacteriol 170: 3810–3816.

    Google Scholar 

  • Orsat B, Monfort A, Chatellard P and Stutz E (1992) Mapping and sequencing of an actively transcribed Euglena gracilis chloroplast gene (cesA) homologous to the Arabidopsis thaliana nuclear gene cs(ch-42). FEBS Lett 303: 181–184.

    Article  PubMed  CAS  Google Scholar 

  • Parham R and Rebeiz CA (1992) Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme. Biochemistry 31: 8460–8464.

    Article  PubMed  CAS  Google Scholar 

  • Peschek GA, Hinterstoisser B, Pineau B and Missbichler A (1989a) Light-independent NADPH-protochlorophyllide oxidoreductase activity in purified plasma membrane from the cyanobacterium Anacystis nidulans. Biochem Biophys Res Commun 162: 71–78.

    Article  PubMed  CAS  Google Scholar 

  • Peschek GA, Hinterstoisser B, Wastyn M, Kuntner O, Pineau B, Missbichler A and Lang J. (1989b) Chlorophyll precursors in the plasma membrane of a cyanobacterium, Anacystis nidulans: characterization of protochlorophyllide and chlorophyllide by spectrophotometry, spectrofluorimetry, solvent partition, and high performance liquid chromatography. J Biol Chem 264: 11827–11832.

    PubMed  CAS  Google Scholar 

  • Petricek M, Rutberg L, Schröder I and Hederstedt L (1990) Cloning and characterization of the hemA region of the Bacillus subtilis chromosome. J Bacteriol. 172: 2250–2258.

    PubMed  CAS  Google Scholar 

  • Porra RJ, Schäfer W, Cmiel E, Katheder l and Scheer H (1993) Derivation of the formyl-group oxygen of chlorophyll-b from molecular oxygen in greening leaves of a higher plant (Zeamays). FEBS Lett 323: 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Poulson R and Polglase WJ (1974) Aerobic and anaerobic coproporphyrinogenase activities in extracts from Saccharo-myces cerevisiae. J Biol Chem 249: 6367–6371.

    PubMed  CAS  Google Scholar 

  • Powell KA, Cox R, McConville M and Charles HP (1973) Mutations affecting porphyrin biosynthesis in Escherichia coli. Enzyme 16: 65–73.

    PubMed  CAS  Google Scholar 

  • Ramseier TM, Kaluza B, Studer D, Gloudemans T, Bisseling T, Jordan PM, Jones RM, Zuber M and Hennecke H (1989) Cloning of a DNA region from Bradyrhizobium japonicum encoding plieotropic functions in heme metabolism and respiration. Arch Microbiol 151: 203–212.

    Article  CAS  Google Scholar 

  • Rebeiz CA, Wu SM, Kuhadja M, Daniell H and Perkins EJ (1983) Chlorophyll a biosynthetic routes and chlorophyll a chemical heterogeneity in plants. Mol Cell Biochem 57: 97–125.

    Article  PubMed  CAS  Google Scholar 

  • Reith M and Munholland J (1993) A high resolution gene map of the chloroplast genome of the red alga Porphyra purpurea. Plant Cell 5: 475–645.

    Google Scholar 

  • Rhie G and Beale SI (1992) Biosynthesis of phycobilins: ferredoxin-supported, NADPH-independent heme oxygenase and phycobilin-forming activities from Cyanidium caldarium. J Biol Chem 67: 16088–16093.

    Google Scholar 

  • Rhie G and Beale SI (1994) Regulation of heme oxygenase by light, glucose, and δ-aminolevulinic acid in Cyanidium caldarium. J Biol Chem, in press.

    Google Scholar 

  • Richards WR, Fung M, Wessler AN and Hinchigeri SB (1987) The purification and properties of three latter-stage enzymes of chlorophyll synthesis. In: Biggins J (ed) Progress in Photosynthesis Research, Vol. IV pp475–482. Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Richter ML and Rienits KG (1982) The synthesis of magnesium-protoporphyrin IX by etiochloroplast membrane preparations. Biochim Biophys Acta 717: 255–264.

    Article  CAS  Google Scholar 

  • Rieble S and Beale SI (1988) Enzymatic transformation of glutamate to δ-aminolevulinic acid by soluble extracts of Synechocystis sp. 6803 and other oxygenic prokaryotes. J Biol Chem 263: 8864–8871.

    PubMed  CAS  Google Scholar 

  • Rieble S and Beale SI (1991a) Purification of glutamyl-tRNA reductase from Synechocystis sp. PCC 6803. J Biol Chem 266: 9740–9744.

    PubMed  CAS  Google Scholar 

  • Rieble S and Beale SI (1991b) Separation and partial characterization of enzymes catalyzing δ-aminolevulinic acid formation in Synechocystis sp. PCC 6803. Arch Biochem Biophys 289: 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Rieble S and Beale SI (1992) Structure and expression of a cyanobacterial ilvC gene encoding acetohydroxyacid isomero-reductase. J Bacteriol 174: 7910–7918.

    PubMed  CAS  Google Scholar 

  • Rieble S, Ormerod JG and Beale SI (1989) Transfonnation of glutamate to δ-aminolevulinic acid by soluble extracts of Chlorobium vibrioforme. J Bacteriol 171: 3782–3787.

    PubMed  CAS  Google Scholar 

  • Roper U, Prinz H and Lutz C (1987) Amino acid composition of the enzyme NADPH, protochlorophyllide oxidoreductase. Plant Sci 52: 15–19.

    Article  Google Scholar 

  • Rosé S, Frydman RB, de los Santos C, Sburlati A, Valasinas A and Frydman B (1988) Spectroscopic evidence for a porphobilinogen deaminase-tetrapyrrole complex that is an intermediate in the biosynthesis of uroporphyrinogen III. Biochemistry 27: 4871–4879.

    Article  PubMed  Google Scholar 

  • Rüdiger W (1987) Chlorophyll synthetase and its implication for regulation of chlorophyll biosynthesis In: Biggins J (ed) Progress in Photosynthesis Research, Vol. IV pp 461–467 Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Rüdiger W, Hedden P, Köst H-P and Chapman DJ (1977) Esterification of chlorophyllide by geranylgeranyl pyrophosphate in a cell-free system from maize shoots. Biochem Biophys Res Commun 74: 1268–1272.

    Article  PubMed  Google Scholar 

  • Rüdiger W, Benz J and Guthoff C (1980) Detection and partial characterization of activity of chlorophyll synthetase in etioplast membranes. Eur J Biochem 109: 193–200.

    Article  PubMed  Google Scholar 

  • Saiki K, Mogi T, Ogura K and Anraku Y (1993) In vitro heme o synthesis by the cyoE gene product from Escherichia coli. J Biol Chem 268: 26041–26045.

    PubMed  CAS  Google Scholar 

  • Saiki K, Mogi T and Anraku Y (1992) Heme o biosynthesis in Escherichia coli: the cyoE gene in the cytochrome BO Operon encodes aprotoheme IX famesytransferase. Biochem Biophys Res Commun 189: 1491–1497.

    Article  PubMed  CAS  Google Scholar 

  • Santel H-J and Apel K (1981) The protochlorophyllide holo-chrome of barley (Hordeum vulgare L.): the effect of light on the NADPH, protochlorophyllide oxidoreductase. Eur J Biochem 120: 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Sasarman A, Nepveu A, Echelard Y, Dymetryszyn J, Drolet M and Goyer C (1987) Molecular cloning and sequencing of the hemD gene of Escherichia coli K-12 and preliminary data on the Uro operon. J Bacteriol 169: 4257–4262.

    PubMed  CAS  Google Scholar 

  • Schaumberg A, Schneider-Poetsch HAW and Eckerskorn C (1992) Characterization of plastid 5-aminolevulinate dehydratase (ALAD; EC 4.2.1.24) from spinach (Spinacia oleracea L.) by sequencing and comparison with non-plant ALAD enzymes. Z Naturforsch 47c: 77–84.

    Google Scholar 

  • Schneegurt MA and Beale SI (1988) Characterization of the RNA required for biosynthesis of δ-aminolevulinic acid from glutamate: purification by anticodon-based affinity chromatography and determination that the UUC glutamate anticodon is a general requirement for function in ALA biosynthesis. Plant Physiol 86: 497–504.

    Article  PubMed  CAS  Google Scholar 

  • Schneegurt MA and Beale SI (1992) Origin of the chlorophyll b formyl oxygen atom in Chlorella vulgaris. Biochemistry 31: 11677–11683.

    Article  PubMed  CAS  Google Scholar 

  • Schneegurt MA, Rieble S and Beale SI (1988) The tRN A required for in vitro δ-aminolevulinic acid formation from glutamate in Synechocystis extracts. Plant Physiol 88: 1358–1366.

    Article  PubMed  CAS  Google Scholar 

  • Schoch S and Schäfer W (1978) Tetrahydrogeranylgeraniol, a precursor of phytol in the biosynthesis of chlorophyll a— localization of the double bonds. Z Naturforsch 33c: 408–412.

    CAS  Google Scholar 

  • Schoch S, Lempert U and Rüdiger W (1977) On the last steps of chlorophyll biosynthesis: intermediates between chlorophyllide andphytol-containing chlorophyll. Z Pflanzenphysiol 83: 427–436.

    CAS  Google Scholar 

  • Schoch S, Hehlein C and Rüdiger W (1980) Influence of anaerobiosis on chlorophyll biosynthesis in greening oat seedlings (Avena sativa L.). Plant Physiol 66: 576–579.

    Article  PubMed  CAS  Google Scholar 

  • Schoenhaut DS and Curtis PJ (1986) Nucleotide sequence of mouse 5-aminolevulinic acid synthase cDNA and expression of its gene in hepatic and erythroid tissues. Gene 48: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG and Söll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322: 281–284.

    Article  PubMed  Google Scholar 

  • Schröder I, Hederstedt L, Kannangara CG and Gough SP (1992) Glutamyl-tRNA reductase activity in Bacillus subtilis is dependent on the hemA gene product. Biochem J 281: 843–850.

    PubMed  Google Scholar 

  • Schultz R, Steinmüller K, Klaas M, Forreiter C, Rasmussen S, Hiller C and Apel K (1989) Nucleotide sequence of a cDNA coding for the NADPH-protochlorophyllide oxidoreductase (PCR) of barley (Hordeum vulgare L.) and its expression in Escherichia coli. Mol Gen Genet 217: 355–361.

    Article  Google Scholar 

  • Schuster A, Köst H-P, Rüdiger W, Holroyd JA and Brown SB (1983) Incorporation of haem into phycocyanobilin in levulinic acid treated Cyanidium caldarium. Plant Cell Rep 2: 85–87.

    Article  CAS  Google Scholar 

  • Scott AI, Burton G, Jordan PM, Matsumoto H, Fagerness PE and Pry de LM (1980) N.M.R. spectroscopy as aprobe for the study of enzyme-catalysed reactions: further observations of preuroporphyrinogen, a substrate for uroporphyrinogen III cosynthetase. J Chem Soc Chem Commun 1980: 384–387.

    Article  Google Scholar 

  • Seehra JS, Jordan PM and Akhtar M (1983) Anaerobic and aerobic coproporphyrinogen III oxidases of Rhodopseudomonas sphaeroides: mechanism and stereochemistry of vinyl group formation. Biochem J 209: 709–718.

    PubMed  CAS  Google Scholar 

  • Sharif AL, Smith AG and Abell C (1989) Isolation and characterization of a cDNA clone for a chlorophyll synthesis enzyme from Euglena gracilis: the chloroplast enzyme hydroxymethylbilane synthase (porphobilinogen deaminase) is synthesized with a very long transit peptide in Euglena. Eur J Biochem 184: 353–359.

    Article  PubMed  CAS  Google Scholar 

  • Siegel LM (1978) Structure and function of siroheme and the siroheme enzymes. In: Singer TP and Ondarza RN (eds) Developmental Biochemistry, Vol. 1 pp 201–214 Elsevier, Amsterdam.

    Google Scholar 

  • Siegel LM, Davis PS and Murphy MJ (1977) Incorporation of methionine-derived methyl groups into sirohaem by Escherichia coli. Biochem J 167: 669–674.

    PubMed  CAS  Google Scholar 

  • Siepker LJ, Ford M, de Kock R and Kramer S (1987) Purification of bovine protoporphyrinogen oxidase: immunological cross-reactivity and structural relationship to ferrochelatase. Biochim Biophys Acta 913: 349–358.

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Kannangara CG and Grimm B (1992) Glutamate 1-semialdehyde aminotransferase: anomalous enantiomeric reaction and enzyme mechanism. Biochemistry 31: 11249–11254.

    Article  PubMed  CAS  Google Scholar 

  • Spano AJ, He Z and Timko MP (1992) NADPH:protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. taeda): evidence for light and developmental regulation of expression and conservation in gene organization andprotein structure between angiosperms and gymnosperms. Mol Gen Genet 236: 86–95.

    PubMed  CAS  Google Scholar 

  • Spiller SC, Castelfranco AM and Castelfranco PA (1982) Effects of iron and oxygen of chlorophyll biosynthesis, I: in vivo observations on iron and oxygen-deficient plants. Plant Physiol 69: 107–111.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki JY and Bauer CE (1992) Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL(frxC). Plant Cell 4: 929–940.

    PubMed  CAS  Google Scholar 

  • Svensson B, Lübben M and Hederstedt L (1993) Bacillus subtilis CtaA and CtaB function in haem A biosynthesis. Mol Microbiol 10: 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Swanson RV, Zhou J, Leary JA, Williams T, de Lorimier R, Bryant DA and Glazer AN (1992a) Characterization of phycocyanin produced by cpcE and cpcF mutants and identification of an intergenic suppressor of the defect in bilin attachment. J Biol Chem 267: 16146–16154.

    PubMed  CAS  Google Scholar 

  • Swanson RV, de Lorimier R and Glazer AN (1992b) Genes encoding the phycobilisome rod substructure are clustered on the Anabaena chromosome: characterization of the phycoery-throcyanin operon. J Bacteriol 174: 2547–2640.

    Google Scholar 

  • Sylvers LA, Rogers KC, Shimizu M, Ohtsuka E and Söll D (1993) A 2-thiouridine derivative in tRN AGlu is a positive determinant for aminoacylation by Escherichia coli glutamyl-tRNA synthetase. Biochemistry 32: 3836–3841.

    Article  PubMed  CAS  Google Scholar 

  • Tait GH (1972) Coproporphyrinogenase activities in extracts of Rhodopseudomonas sphaeroides and Chromatium strain D. Biochem J 128: 1159–1169.

    PubMed  CAS  Google Scholar 

  • Taniuchi H, Basile G, Taniuchi M and Veloso D (1983) Evidence for formation of two thioether bonds to link heme to apocytochrome c by partially purified cytochrome c synthetase. J Biol Chem 258: 10963–10966.

    PubMed  CAS  Google Scholar 

  • Thomas SD and Jordan PM (1986) Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K12. Nuc Acids Res 14: 6215–6226.

    Article  CAS  Google Scholar 

  • Turner L, Houghton JD and Brown SB (1992) Isolation and partial purification of phycocyanin apoprotein and its role in studies of bilin-apoprotein attachment. Plant Physiol Biochem 30: 309–314.

    CAS  Google Scholar 

  • Verkamp E, Jahn M, Jahn D, Kumar AM and Söll D (1992) Glutamyl-tRN A reductase from Escherichia coli and Synecho-cystis 6803: gene structure and expression. J Biol Chem 267: 8275–8280.

    PubMed  CAS  Google Scholar 

  • Walker CJ and Griffiths WT (1988) Protochlorophyllide reductase: a flavoprotein?. FEBS Lett 239: 259–262.

    Article  CAS  Google Scholar 

  • Walker CJ and Weinstein JD (1991 a) Further characterization of the magnesium chelatase in isolated developing cucumber chloroplasts: substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95: 1189–1196.

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ and Weinstein JD (1991b) In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc Natl Acad Sci USA 88: 5789–5793.

    Article  PubMed  CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Rezzano IN, Hanamoto CH, Smith KM and Castelfranco PA (1988) The magnesium-proto-porphyrin IX (oxidative) cyclase system: studies on the mechanism and specificity of the reaction sequence. Biochem J 255: 685–692.

    PubMed  CAS  Google Scholar 

  • Walker CJ, Mansfield KE, Smith KM and Castelfranco PA (1989) Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring. Biochem J 257: 599–602.

    PubMed  CAS  Google Scholar 

  • Walker CJ, Castelfranco PA and Whyte BJ (1991) Synthesis of divinyl protochlorophyllide: enzymological properties of the Mg-protoporphyrin IX monomethyl ester oxidative cyclase system. Biochem J 276: 691–697.

    PubMed  CAS  Google Scholar 

  • Walker CJ, Hupp LR and Weinstein JD (1992) Activation and stabilization of Mg-chelatase activity by ATP as revealed by a novel in vitro continuous assay. Plant Physiol Biochem 30: 263–269.

    CAS  Google Scholar 

  • Wang W-Y, Gough SP and Kannangara CG (1981) Biosynthesis of δ-aminolevulinate in greening barley leaves, IV: Isolation of three soluble enzymes required for the conversion of glutamate to δ-aminolevulinate. Carlsberg Res Commun 46: 243–257.

    Article  CAS  Google Scholar 

  • Wang W-Y, Huang D-D, Stachon D, Gough SP and Kannangara CG (1984) Purification, characterization, and fractionation of the δ-aminolevulinic acid synthesizing enzymes from light-grown Chlamydomonas reinhardtii cells. Plant Physiol 74: 569–575.

    Article  PubMed  CAS  Google Scholar 

  • Warren MJ and Jordan PM (1988) Further evidence for the involvement of a dipyrromethene cofactor at the active site of porphobilinogen deaminase. Biochem Soc Trans 16: 963–965.

    CAS  Google Scholar 

  • Warren MJ, Roessner CA, Santander PJ and Scott AI (1990) The Escherichia coli cysG gene encodes S-adenosylmethionine-dependent uroporphyrinogen III methylase. Biochem J 265: 725–729.

    PubMed  CAS  Google Scholar 

  • Watanabe T, Kobayashi M, Nakazato M, Ikegami I and Hiyama T (1987) Chlorophyll a′ in photosynthetic apparatus: reinvestigation. In: Biggins J (ed) Progress in Photosynthesis Research, Vol. I pp 303–306 Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Wedemayer GJ, Wemmer DE and Glazer AN (1991) Phycobilins of Cryptophytan algae: structures of novel bilins with acryloyl substituents from phycoerythrin 566. J Biol Chem 266: 4731–4741.

    PubMed  CAS  Google Scholar 

  • Wedemayer GJ, Kidd DG, Wemmer DE and Glazer AN (1992) Phycobilins of Cryptophytan algae: occurrence of dihydro-biliverdin and mesobiliverdin in cryptomonad biliproteins. J Biol Chem 267: 7315–7331.

    PubMed  CAS  Google Scholar 

  • Weinstein JD and Beale SI (1985a) Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of the unicellular green alga, Chlorella vulgaris. Arch Biochem Biophys 237: 454–464.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JD and Beale SI (1985b) RNA is required for enzymatic conversion of glutamate to δ-aminolevulinic acid by extracts of Chlorella vulgaris. Arch Biochem Biophys 239: 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JD, Mayer SM and Beale SI (1986) Stimulation of δ-aminolevulinic acid formation in algal extracts by heterologous RNA. Plant Physiol 82: 1096–1101.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JD, Mayer SM and Beale SI (1987) Formation of δ-aminolevulinic acid from glutamic acid in algal extracts: separation into an RNA and three required enzyme components by serial affinity chromatography. Plant Physiol 84: 244–250.

    Article  PubMed  CAS  Google Scholar 

  • Weinstein JD, Howell RW, Leverette RD, Grooms SY, Brignola PS, Mayer SM and Beale SI (1993) Heme inhibition of δ-aminolevulinic acid synthesis is enhanced by glutathione in cell-free extracts of Chlorella. Plant Physiol 101: 657–665.

    PubMed  CAS  Google Scholar 

  • Weller J-P and Gossauer A (1980) Synthesen von Gallenfarbstoffen, X: Synthese und Photoisomerisierung des racem. Phytochromobilin-dimethylesters. Chem Ber 113: 1603–1611.

    Article  CAS  Google Scholar 

  • Wemmer DE, Wedemayer GJ and Glazer AN (1993) Phycobilins of cryptophycean algae: novel linkage of dihydrobiliverdin in a phycoerythrin 555 and a phycocyanin 645. J Biol Chem 268: 1658–1669.

    PubMed  CAS  Google Scholar 

  • Whyte BJ and Griffiths WT (1993) 8-Vinyl reduction and chlorophyll a biosynthesis in higher plants. Biochem J 291: 939–944.

    PubMed  CAS  Google Scholar 

  • Wilbanks SM and Glazer AN (1993) Rod structure of a phycoerythrin II-containing phycobilisome, I: organization and sequence of the gene cluster encoding the major phycobili-protein rod components in the genome of marine Synecho-coccus sp. WH8020. J Biol Chem 268: 1226–1235.

    PubMed  CAS  Google Scholar 

  • Witty M, Wallace-Cook ADM, Albrecht H, Spano AJ, Michel H, Shabanowitz J, Hunt DF, Timko MP and Smith AG (1993) Structure and expression of chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.) isolated by redundant polymerase chain reaction. Plant Physiol 103: 139–147.

    Article  PubMed  CAS  Google Scholar 

  • Wong Y-S and Castelfranco PA (1984) Resolution and reconstitution of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase, the enzyme system responsible for the formation of the chlorophyll isocyclic ring. Plant Physiol 75: 658–661.

    Article  PubMed  CAS  Google Scholar 

  • Wong Y-S and Castelfranco PA (1985) Properties of the Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase system. Plant Physiol 79: 730–733.

    Article  PubMed  CAS  Google Scholar 

  • Wong Y-S, Castelfranco PA, Goff DA and Smith KM (1985) Intermediates in the formation of the chlorophyll isocyclic ring. Plant Physiol 79: 725–729.

    Article  PubMed  CAS  Google Scholar 

  • Wu S-M and Rebeiz CA (1985) Chlorophyll biogenesis: molecular structure of chlorophyll b (E489 F666). J Biol Chem 260: 3632–3634.

    PubMed  CAS  Google Scholar 

  • Wu W, Chang CK, Varotsis C, Babcock GT, Puustinen A and Wikström M (1992) Structure of the heme o prosthetic group from the terminal quinol oxidase of Escherichia coli. J Am Chem Soc 114: 1182–1187.

    Article  CAS  Google Scholar 

  • Xu K and Elliott T (1993) An oxygen-dependent copropor-phyrinogen oxidase encoded by the hemF gene of Salmonella typhimurium. J Bacteriol 175: 4990–4999.

    PubMed  CAS  Google Scholar 

  • Xu K and Elliott T (1994) Cloning, DNA sequence and complementation analysis of the Salmonella typhimurium hemN gene encoding a putative oxygen-dependent copropor-phyrinogen III oxidase. J Bacteriol, in press.

    Google Scholar 

  • Xu K, Delling J and Elliott (1992) The genes required for heme synthesis in Salmonella typhimurium include those encoding alternative functions for aerobic and anaerobic copropor-phyrinogen oxidation. J Bacteriol 174: 3953–3963.

    PubMed  CAS  Google Scholar 

  • Yang Z and Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172: 5001–5010.

    PubMed  CAS  Google Scholar 

  • Yee WC, Eglsaer SJ and Richards WR (1989) Confirmation of a ping-pong mechanism for S-adenosyl-L-methionine:mag-nesium protoporphyrin methyltransferase of etiolated wheat by an exchange reaction. Biochem Biophys Res Commun 162: 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Zagorec M, Buhler J-M, Treich I, Keng T, Gaurente L and Labbe-Bois R (1988) Isolation, sequence, and regulation by oxygen of the yeast HEM13 gene coding for coproporphyrinogen oxidase. J Biol Chem 263: 9718–9724.

    PubMed  CAS  Google Scholar 

  • Zaman Z and Akhtar M (1976) Mechanism and stereochemistry of vinyl-group formation in haem biosynthesis. Eur J Biochem 61: 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Gasparich GE, Stirewalt VL, de Lorimier R and Bryant DA (1992) The cpcE and cpcF genes of Synechococcus sp. PCC7002: construction and phenotypic characterization of interposon mutants. J Biol Chem 267: 16138–16145.

    PubMed  CAS  Google Scholar 

  • Zollner A, Rödel G and Haid A (1992) Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c 1-heme lyase. Eur J Biochem 207: 1093–1100.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beale, S.I. (1994). Biosynthesis of Cyanobacterial Tetrapyrrole Pigments: Hemes, Chlorophylls, and Phycobilins. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics