Skip to main content

The Biochemistry and Molecular Regulation of Carbon Dioxide Metabolism in Cyanobacteria

  • Chapter

Part of the book series: Advances in Photosynthesis ((AIPH,volume 1))

Summary

Carbon dioxide is a greenhouse gas whose accumulation in the biosphere has been the cause for increasing concern. CO2 is also the source for virtually all organic carbon on Earth and its efficient assimilation is directly related to agricultural productivity. As organisms which often depend on the reduction and assimilation of CO2 as their prime source of carbon, cyanobacteria have become important tools for gaining an understanding of the biochemical and molecular mechanisms involved. These organisms take on added significance because the entire process, the catalysts employed and their structural genes, are to some extent quite similar to those of higher plants. Because of the relative ease in using molecular techniques and transferring genetic information in cyanobacteria, there are many advantages to these organisms as models for green plant CO2 metabolism. There are also differences that make cyanobacteria fascinating in their own right. Over the last few years, there has been a tremendous upsurge in interest in cyanobacterial CO2 fixation research. Important insights relative to the biochemistry of the process have emerged, fueled by the revolution in molecular biology. This chapter thus considers the current state of the field and reviews the many important contributions that have been made on this interesting and important area of cyanobacterial research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen K and Caton J (1987) Sequence analysis of Alcaligenes eutrophus chromosonally encoded ribulose bisphosphate carboxylase large and small subunit genes and their gene products. J Bacteriol 169: 4547–4558.

    PubMed  CAS  Google Scholar 

  • Andersson I, Knight S, Schneider G, Lindqvist Y, Lundqvist T, Brändén C-I and Lorimer GH (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature 337: 229–234.

    Article  CAS  Google Scholar 

  • Andrews TJ (1988) Catalysis by cyanobacterial ribulose-bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem 263: 12213–12219.

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Abel KM (1981) Kinetics and subunit interactions of ribulose bisphosphate carboxylase-oxygenase from the cyanobacterium, Synechococcus sp. J Biol Chem 256: 8445–8451.

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Bailment B (1983) The function of the small subunits of ribulose bisphosphate carboxylase-oxygenase. J Biol Chem 258: 7514–7518.

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Kane HJ (1991) Pyruvate is a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase. J Biol Chem 266: 9452–9947.

    Google Scholar 

  • Andrews TJ and Lorimer GH (1985) Catalytic properties of a hybrid between cyanobacterial large subunits and higher plant small subunits of ribulose bisphosphate carboxylase-oxygenase. J Biol Chem 260: 4632–4636.

    PubMed  CAS  Google Scholar 

  • Andrews TJ and Lorimer GH (1987) Rubisco: Structure, Mechanisms, and Prospects for Improvement. In: Stumpf PK and Conn EE (eds) The Biochemistry of Plants: A Comprehensive Treatise, Vol 10, pp 131–218. Academic, San Diego.

    Google Scholar 

  • Andrews TJ, Greenwood DM and Yellowlees D (1984) Catalytically active hybrids formed in vitro between large and small subunits of different procaryotic ribulose bisphosphate carboxylases. Arch Biochem Biophys 234: 313–317.

    Article  PubMed  CAS  Google Scholar 

  • Asami S, Takabe T, Akazawa T and Codd GA (1983) Ribulose 1,5-bisphosphate carboxylase from the halophilic cyanobacterium Aphanothece halophytica. Arch Biochem Biophys 225: 713–721.

    Article  PubMed  CAS  Google Scholar 

  • Badger MR (1980) Kinetic properties of ribulose 1,5-bisphosphate carboxylase/oxygenase from Anabaena variabilis. Arch Biochem Biophys 201: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Baldauf SL and Palmer JD (1990) Evolutionary transfer of the chloroplast tufA gene to the nucleus. Nature 344: 262–265.

    Article  PubMed  CAS  Google Scholar 

  • Barraclough R and Ellis RJ (1980) Protein synthesis in chloroplasts. IX. Assembly of newly-synthesized large subunits into ribulose bisphosphate carboxylase in isolated intact pea chloroplasts. Biochim Biophys Acta 608: 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Berry JA, Lorimer GH, Pierce J, Seemann JR, Meek J and Freas S (1987) Isolation, identification, and synthesis of 2-carboxyarabinitol 1-phosphate, a diurnal regulator of ribulose-bisphosphate carboxylase activity. Proc Natl Acad Sci USA 84: 734–738.

    Article  PubMed  CAS  Google Scholar 

  • Borrias M and de Vrieze G (1991) Molecular cloning of the gene encoding a plant-like phosphoribulokinase of the cyanobacterium Anacystis nidulans R2. VII Intl Symp Photosynth Proc Abst: B97.

    Google Scholar 

  • Bottomley PJ and Van Baalen C (1978) Characteristics of heterotrophic growth in the blue-green alga Nostoc sp. strain Mac. J Gen Microbiol 107: 309–318.

    Article  CAS  Google Scholar 

  • Bottomley PJ and Van Baalen C (1978) Dark hexose metabolism by photoautotrophically and heterotrophically grown cells of the blue-green alga (cyanobacterium) Nostoc sp. strain Mac. J Bacteriol 135: 888–894.

    PubMed  CAS  Google Scholar 

  • Bowes G and Ogren WL (1972) Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem 247: 2171–2176.

    PubMed  CAS  Google Scholar 

  • Bradley S and Carr NG (1976) Heterocyst and nitrogenase development in Anabaena cylindrica. J Gen Microbiol 96: 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Bradley S and Carr NG (1977) Heterocyst development in Anabaena cylindrica: the necessity for light as an initial trigger and sequential stages of commitment. J Gen Microbiol 101: 291–296.

    Article  Google Scholar 

  • Brändén R, Keys AJ and Parry MAJ (1990) Rapid kinetics of an N-terminal mutant of cyanobacterial ribulose-1,5-bisphosphate carboxylase/oxygenase. Biochim Biophys Acta 1037: 328–331.

    Article  PubMed  Google Scholar 

  • Bryant DA and Stirewalt VL (1990) The cyanelle genome of Cyanophoraparadoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants. FEBS Lett 259: 273–280.

    Article  PubMed  CAS  Google Scholar 

  • Broglie R, Coruzzi G, Fraley RT, Rogers SG, Horsch RB, Niedermeyer JG, Fink CL, Flick JS and Chua N-H (1984) Light-regulated expression of a pea ribulose-1,5-bisphosphate carboxylase small subunit gene in transformed plant cells. Science 224: 838–843.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan BB (1980) Role of light on the regulation of chloroplast enzymes. Ann Rev Plant Physiol 31: 341–374.

    Article  CAS  Google Scholar 

  • Carr NG (1973) Metabolic control and autotrophic physiology. In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 39–65. Blackwell, Oxford.

    Google Scholar 

  • Chen C (1987) Nitrogen metabolism and heterocyst differentiation in the cyanobacteria. Ph.D. Dissertation. The University of Texas at Austin.

    Google Scholar 

  • Chen Z and Spreitzer RJ (1989) Chloroplast intragenic suppression enhances the low CO2/O2 specificity of mutant ribulose-bisphosphate carboxylase/oxygenase. J Biol Chem 264: 3051–3053.

    PubMed  CAS  Google Scholar 

  • Chen C, Van Baalen C and Tabita FR (1987a) DL-7-Azatryptophan and citrulline metabolism in the cyanobacterium Anabaena sp. strain if. J Bacteriol 169: 1114–1119.

    PubMed  CAS  Google Scholar 

  • Chen C, Van Baalen C and Tabita FR (1987b) Nitrogen starvation mediated by DL-7-azatryptophan in the cyanobacterium Anabaena sp. strain CA. J Bacteriol 169: 1107–1113.

    PubMed  CAS  Google Scholar 

  • Christeller JT, Terzaghi BE, Hill DF and Laing WA (1985) Activity expressed from cloned Anacystis nidulans large and small subunit ribulose bisphosphate carboxylase genes. Plant Mol Biol 5: 257–263.

    Article  CAS  Google Scholar 

  • Chu DK and Bassham JA (1973) Activation and inhibition of ribulose 1,5-diphosphate carboxylase by 6-phosphogluconate. Plant Physiol 52: 373–379.

    Article  PubMed  CAS  Google Scholar 

  • Cloney LP, Bekkaoui DR, Wood MG and Hemmingsen SM (1992a) Assessment of plant chaperonin-60 gene function in Escherichia coli. J Biol Chem 267: 23333–23336.

    PubMed  CAS  Google Scholar 

  • Cloney LP, Wu HB and Hemmingsen SM (1992b) Expression of plant chaperonin-60 genes in Escherichia coli. J Biol Chem 267: 23327–23332

    PubMed  CAS  Google Scholar 

  • Coleman JR and Colman B (1980) Effect of oxygen and temperature on the efficiency of photosynthetic carbon assimilation in two microscopic algae. Plant Physiol 65: 980–983.

    Article  PubMed  CAS  Google Scholar 

  • Coleman JR and Colman B (1981) Inorganic carbon accumulation and photosynthesis in a blue-green alga as a function of external pH. Plant Physiol 67: 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Colman B (1989) Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria. Aquat Botany 34: 211–231.

    Article  CAS  Google Scholar 

  • Cook LS and Tabita FR (1988) Oxygen regulation of ribulose 1,5-bisphosphate carboxylase activity in Rhodospirillum rubrum. J Bacteriol 170: 5468–5472.

    PubMed  CAS  Google Scholar 

  • Cook LS, Im H, and Tabita FR (1988) Oxygen-dependent inactivation of ribulose 1,5-bisphosphate carboxylase/ oxygenase in crude extracts of Rhodospirillum rubrum and establishment of a model inactivation system with purified enzyme. J Bacteriol 170: 5473–5478.

    PubMed  CAS  Google Scholar 

  • Crawford NA, Sutton CW, Yee BC, Johnson TC, Carlson DC and Buchanan BB (1984) Contrasting modes of photosynthetic enzyme regulation in oxygenic and anoxygenic prokaryotes. Arch Microbiol 139: 124–129.

    Article  PubMed  CAS  Google Scholar 

  • Curtis SE and Haselkorn R (1983) Isolation and sequence of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 80: 1835–1839.

    Article  PubMed  CAS  Google Scholar 

  • Duggan JX and Anderson LE (1975) Light-regulation of enzyme activity in Anacystis nidulans (Richt.). Planta 122: 293–297.

    Article  CAS  Google Scholar 

  • Ellis RJ (1979) The most abundant protein in the world. Trends Biochem Sci 4: 241–244.

    Article  CAS  Google Scholar 

  • Ellis RJ (1990) Molecular chaperones: the plant connection. Science 250: 954–959.

    Article  PubMed  CAS  Google Scholar 

  • Falcone DL and Tabita FR (1991) Expression of endogenous and foreign ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) genes in a RubisCO deletion mutant of Rhodobacter sphaeroides. J Bacteriol 173: 2099–2108.

    PubMed  CAS  Google Scholar 

  • Fitchen JH, Knight S, Andersson I, Brändén C-I and Mcintosh L (1990) Residues in three conserved regions of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase are required for quaternary structure. Proc Natl Acad Sci USA 87: 5768–5772.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg D, Kaplan A, Ariel R, Kessel M and Seijffers J (1989) The 5′-flanking region of the gene encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is crucial for growth of the cyanobacterium Synechococcus sp. Strain PCC 7942 at the level of CO2 in air. J Bacteriol 171: 6069–6076.

    PubMed  CAS  Google Scholar 

  • Gatenby AA, van der Vies SM and Bradley D (1985) Assembly in E. coli of a functional multi-subunit ribulose bisphosphate carboxylase from a blue-green alga. Nature 314: 617–620.

    Article  CAS  Google Scholar 

  • Gibson JL and Tabita FR (1977) Different molecular forms of D-ribulose-1,5-bisphosphate carboxylase from Rhodopseu-domonas sphaeroides. J Biol Chem 252: 943–949.

    PubMed  CAS  Google Scholar 

  • Gibson JL, Chen J-H, Tower PA and Tabita FR (1990) The form II fructose 1,6-bisphosphatase and phosphoribulokinase genes form part of a large Operon in Rhodobacter sphaeroides: Primary structure and insertional mutagenesis analysis. Biochemistry 29: 8085–8093.

    Article  PubMed  CAS  Google Scholar 

  • Gibson JL, Falcone DL and Tabita FR (1991) Nucleotide sequence, transcriptional analysis, and expression of genes encoded within the form ICO2 fixation Operon of Rhodobacter sphaeroides. J Biol Chem 266: 14646–14653.

    PubMed  CAS  Google Scholar 

  • Golden JW, Carrasco CD, Mulligan ME, Schneider GJ and Haselkorn R (1988) Deletion of a 55-kilodalton-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J Bacteriol 170: 5034–5041.

    PubMed  CAS  Google Scholar 

  • Goloubinoff P, Gatenby AA and Lorimer GH (1989) GroE heat-shock proteins promote assembly of foreign prokaryotic ribulose bisphosphate carboxylase oligomers in Escherichia coli. Nature 337: 44–47.

    Article  PubMed  CAS  Google Scholar 

  • Gurevitz M, Somerville CR and Mcintosh L (1985) Pathway of assembly of ribulosebisphosphate carboxylase/oxygenase from Anabaena 7120 expressed in Escherichia coli. Proc Natl Acad Sci USA 82: 6546–6550.

    Article  PubMed  CAS  Google Scholar 

  • Gutteridge S (1991) The relative catalytic specificities of the large subunit core of Synechococcus ribulose bisphosphate carboxylase/oxygenase. J Biol Chem 266: 7359–7362.

    PubMed  CAS  Google Scholar 

  • Gutteridge S, Parry MAJ, Burton S, Keys AJ, Mudd A, Feeney J, Servaites JC and Pierce J (1986) A nocturnal inhibitor of carboxylation in leaves. Nature 324: 274–276.

    Article  CAS  Google Scholar 

  • Haining RL and McFadden BA (1990) A critical arginine in the large subunit of ribulose bisphosphate carboxylase/oxygenase identified by site-directed mutagenesis. J Biol Chem 265: 5434–5439.

    PubMed  CAS  Google Scholar 

  • Harrington TR, Glick BR and Lern NW (1986) Molecular cloning of the phosphoenolpyruvate carboxylase gene of Anabaena variabilis. Gene 45: 113–116.

    Article  PubMed  CAS  Google Scholar 

  • Haselkorn R, Rice D, Curtis SE and Robinson SJ (1983) Organization and transcription of genes important in Anabaena heterocyst differentiation. Ann Microbiol (Inst Pasteur) 134: 181–193.

    Article  Google Scholar 

  • Heinhorst S and Shively JM (1983) Encoding of both subunits of ribulose-1,5-bisphosphate carboxylase by organelle genome of Cyanophora paradoxa. Nature 304: 373–374.

    Article  CAS  Google Scholar 

  • Hemmingsen SM, Woolford C, van der Vies S.M, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW and Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333: 330–334.

    Article  PubMed  CAS  Google Scholar 

  • Herrero A and Wolk CP (1986) Genetic mapping of the chromosome of the cyanobacterium, Anabaena variabilis. Proximity of the structural genes for nitrogenase and ribulose-bisphosphate carboxylase. J Biol Chem 261: 7748–7754.

    PubMed  CAS  Google Scholar 

  • Huang T-C, Chow T-J and Hwang I-S (1988) The cyclic synthesis of the nitrogenase of Synechococcus RF-1 and its control at the transcription level. FEMS Microbiol Lett 36: 109–110.

    Article  Google Scholar 

  • Huang T-C, Tu J, Chow T-J and Chen T-H (1990) Circadian rhythm of the prokaryote Synechococcus sp. RF-1. Plant Physiol 92: 531–533.

    Article  PubMed  CAS  Google Scholar 

  • Husic HD and Tolbert NE (1985) Properties of phosphoglycolate phosphatase from Chlamydomonas reinhardtii and Anacystis nidulans. Plant Physiol 79: 394–399.

    Article  PubMed  CAS  Google Scholar 

  • Hwang S-R and Tabita FR (1989) Cloning and expression of the chloroplast-encoded rbcL and rbcS genes from the marine diatom Cylindrotheca sp. strain N1. Plant Mol Biol 13: 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Hwang S-R and Tabita FR (1991) Cotranscription, deduced primary structure, and expression of the chloroplast-encoded rbcL and rbcS genes of the marine diatom Cylindrotheca sp. strain Nl. J Biol Chem 266: 6271–6279.

    PubMed  CAS  Google Scholar 

  • Ihlenfeldt MJA and Gibson J (1975) CO2 fixation and its regulation in Anacystis nidulans (Synechococcus). Arch Microbiol 102: 13–21.

    Article  PubMed  CAS  Google Scholar 

  • Incharoensakdi A, Takabe T and Akazawa T (1985) Factors affecting the dissociation and reconstitution of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica. Arch Biochem Biophys 237: 445–453.

    Article  PubMed  CAS  Google Scholar 

  • Jansson E, Martel A and Lindblad P (1993) Ornithine cycle in Nostoc PCC 73102. Stimulation of in vitro ornithine carbomyl transferase activity by addition of arginine. Curr Microbiol 26: 75–78.

    Article  CAS  Google Scholar 

  • Jensen RG and Bahr JT (1977) Ribulose 1,5-bisphosphate carboxylase-oxygenase. Ann Rev Plant Physiol 28: 379–400.

    Article  CAS  Google Scholar 

  • Jiao J, Podesta FE, Chollet R, O’Leary MH and Andreo CS (1990) Isolation and sequence of an active-site peptide from maize leaf phosphoenolpyruvate carboxylase inactivated by pyridoxal 5′-phosphate. Biochim Biophys Acta 1041: 291–295.

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB and Chollet R (1985) Subunit dissociation and reconstitution of ribulose-1,5-bisphosphate carboxylase from Chromatium vinosum. Arch Biochem Biophys. 236: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Jordan DB and Ogren WL (1981) Species variation in the specificity of ribulose bisphosphate carboxylase/oxygenase. Nature 291: 513–515.

    Article  CAS  Google Scholar 

  • Jordan DB, Chollet R and Ogren WL (1983) Binding of phosphorylated effectors by active and inactive forms of ribulose-1,5-bisphosphate carboxylase. Biochemistry 22: 3410–3418.

    Article  CAS  Google Scholar 

  • Joset-Espardellier F, Astier C, Evans EH and Carr NG (1978) Cyanobacteria grown under photoautotrophic, photo-heterotrophic, and heterotrophic regimes: sugar metabolism and carbon dioxide fixation. FEMS Microbiol Lett 4: 261–264.

    Article  CAS  Google Scholar 

  • Karagouni AD and Slater JH (1979) Enzymes of the Calvin cycle and intermediary metabolism in the cyanobacterium Anacystis nidulans grown in chemostat culture. J Gen Microbiol. 115: 369–376.

    Article  CAS  Google Scholar 

  • Katagiri F, Kodaki T, Fujita N, Izui K and Katsuki H (1985) Nucleotide sequence of the phosphoenolpyruvate carboxylase gene of the cyanobacterium Anacystis nidulans. Gene 38: 265–269.

    Article  PubMed  CAS  Google Scholar 

  • Kettleborough CA, Parry MAJ, Burton S, Gutteridge S, Keys AJ and Phillips AL (1987) The role of the N-terminus of the large subunit of ribulose-bisphosphate carboxylase investigated by construction and expression of chimaeric genes. Eur J Biochem 170: 335–342.

    Article  PubMed  CAS  Google Scholar 

  • Knight S, Andersson I and Branden C-I (1989) Reexamination of the three-dimensional structure of the small subunit of rubisCO from higher plants. Science 244: 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Knight S, Andersson I, and Branden C-I (1990) Crystallographic analysis of ribulose 1,5-bisphosphate carboxylase from spinach at 2.4 Å resolution. J Mol Biol 215: 113–160.

    Article  PubMed  CAS  Google Scholar 

  • Kodaki T, Katagiri F, Asano M, Izui K and Katsuki H (1985) Cloning of phosphoenolpyruvate carboxylase gene from a cyanobacterium, Anacystis nidulans, in Escherichia coli. J Biochem 97: 533–539.

    PubMed  CAS  Google Scholar 

  • Kossman J, Klintworth R and Bowien B (1989) Sequence analysis of the chromosomal and plasmid genes encoding phospho-ribulokinase from Alcaligenes eutrophus. Gene 85: 247–252.

    Article  Google Scholar 

  • Krieger TJ and Miziorko HM (1986) Affinity labeling and purification of spinach leaf ribulose-5-phosphate kinase. Biochemistry 25: 3496–3501.

    Article  PubMed  CAS  Google Scholar 

  • Lanaras T and Codd GA (1982) Variations in ribulose 1,5-bisphosphate carboxylase protein levels, activities and subcellular distribution during photoautotrophic batch culture of Chlorogloeopsis fritschii. Planta 154: 284–288.

    Article  CAS  Google Scholar 

  • Lang JD and Haselkorn R (1989) Isolation, sequence and transcription of the gene encoding the photosystem II chlorophyll-binding protein, CP-47, in the cyanobacterium Anabaena 7120. Plant Mol Biol 13: 441–456.

    Article  PubMed  CAS  Google Scholar 

  • Lee B and Tabita FR (1990) Purification of recombinant ribulose-1,5-bisphosphate carboxylase/oxygenase large subunits suitable for reconstitution and assembly of active L8S8 enzyme. Biochemistry 29: 9325–9357.

    Google Scholar 

  • Lee B, Berka RM and Tabita FR (1991a) Mutations in the small subunit of cyanobacterial ribulose-bisphosphate carboxylase/ oxygenase that modulate interactions with large subunits. J Biol Chem 266: 7417–7422.

    PubMed  CAS  Google Scholar 

  • Lee B, Read BA and Tabita FR (1991b) Catalytic properties of recombinant octameric, hexadecameric, and heterologous cyanobacterial/bacterial ribulose-1,5-bisphosphate carboxy-lase/oxygenase. Arch Biochem Biophys 291: 263–269.

    Article  PubMed  CAS  Google Scholar 

  • Lee GJ and McFadden BA (1992) Serine-376 contributes to the binding of substrate by ribulose-bisphosphate carboxylase/ oxygenase from Anacystis nidulans. Biochemistry 31: 2304–2308.

    Article  PubMed  CAS  Google Scholar 

  • Li L-A, Gibson JL and Tabita FR (1993) The RubisCO activase (rca) gene is located downstream from rbcS in Anabaena sp. strain CA and is detected in other Nostoc/Anabaena strains. Plant Mol Biol 21: 753–764.

    Article  PubMed  CAS  Google Scholar 

  • Lindblad P (1989) Immunocytochemical localization of carbamyl phosphate synthetase in the filamentous heterocystous cyanobacterium Nostoc PCC 73102. Protoplasma 152: 87–95.

    Article  Google Scholar 

  • Lindblad P (1992) Ornithine cycle in Nostoc PCC 73102. Occurrence and localization of ornithine carbomyl transferase, and the effects of external carbon and ornithine on nitrogenase activity and citrulline synthesis. Physiol Plant 84: 275–282.

    Article  CAS  Google Scholar 

  • Linko P, Holm-Hansen O, Bassham JA and Calvin M (1957) Formation of radioactive citrulline during photosynthetic 14CO2-fixation by blue-green algae. J Exp Bot 8: 147–156.

    Article  CAS  Google Scholar 

  • Lissin NM, Venyaminov SY and Girshovich AS (1990) (Mg-ATP)-dependent self-assembly of molecular chaperone GroEL. Nature 348: 339–341.

    Article  PubMed  CAS  Google Scholar 

  • Lorimer GH and Andrews TJ (1973) Plant photorespiration—an inevitable consequence of the existence of atmospheric oxygen. Nature 243: 359–360.

    Article  CAS  Google Scholar 

  • Luinenburg I and Coleman JR (1990) A requirement for phosphoenolpyruvate carboxylase in the cyanobacterium Synechococcus PCC 7942. Arch Microbiol 154: 471–474.

    Article  CAS  Google Scholar 

  • Luinenburg I and Coleman JR (1992) Identification, characterization and sequence analysis of the gene encoding phosphoenolpyruvate carboxylase in Anabaena sp. PCC 7120. J Gen Microbiol 138: 685–691.

    Article  PubMed  CAS  Google Scholar 

  • Mangeney E, Hawthornthwaite AM, Codd GA and Gibbs SP (1987) Immunocytochemical localization of phosphoribulose kinase in the cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Plant Physiol 84: 1024–1032.

    Article  Google Scholar 

  • Margulis L (1981) Symbiosis in Cell Evolution. W H Freeman, San Francisco.

    Google Scholar 

  • Marsden WJN, and Codd GA (1984) Purification and molecular and catalytic properties of phosphoribulokinase from the cyanobacterium Chlorogloeopsis fritschii. J Gen Microbiol 130: 999–1006.

    CAS  Google Scholar 

  • McFadden BA and Small CL (1989) Cloning, expression and directed mutagenesis of the genes for ribulose bisphosphate carboxylase/oxygenase. Photosyn Res 18: 245–260.

    Article  Google Scholar 

  • Meijer WG, Arnberg AC, Enequist HG, Terpstra P, Lidstrom ME and Dijkhuizen L (1991) Identification and organization of carbon dioxide fixation genes in Xanthobacter flavus H4-14. Mol Gen Genet 225: 320–330.

    Article  PubMed  CAS  Google Scholar 

  • Meeks JC, Wolk CP, Thomas J, Lockau W, Shaffer PW, Austin SM, Chien W-S and Galonsky A (1977) The pathways of assimilation of 13NH4 + by the cyanobacterium, Anabaena cylindrica. J Biol Chem 252: 7894–7900.

    PubMed  CAS  Google Scholar 

  • Milanez S, and Mural RJ (1988) Cloning and sequencing of cDNA encoding the mature form of phosphoribulokinase from spinach. Gene 66: 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Milanez S, Mural RJ and Hartman FC (1991) Role of cysteinyl residues of phosphoribulokinase as examined by site-directed mutagenesis. J Biol Chem 266: 10694–10699.

    PubMed  CAS  Google Scholar 

  • Miziorko HM and Lorimer GH (1983) Ribulose-1,5-bisphosphate carboxylase-oxygenase. Ann Rev Biochem 52: 507–535.

    Article  PubMed  CAS  Google Scholar 

  • Mogel SN and McFadden BA (1989) Photomodification of a serine at the active site of ribulose-1,5-bisphosphate carboxylase/oxygenase by vanadate. Biochemistry 28: 5428–5431.

    Article  PubMed  CAS  Google Scholar 

  • Mohamed A and Jansson C (1989) Influence of light on accumulation of photosynthesis-specific transcripts in the cyanobacterium Synechocystis 6803. Plant Mol Biol 13: 693–700.

    Article  PubMed  CAS  Google Scholar 

  • Morell M, Kane HJ, Hudson GS and Andrews TJ (1992) Effects of mutations at residue 309 of the large subunit of ribulosebisphosphate carboxylase from Synechococcus PCC 6301. Arch Biochem Biophys 299: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Newman J and Gutteridge S (1990) The purification and preliminary X-ray diffraction studies of recombinant Synechococcus ribulose-1,5-bisphosphate carboxylase/ oxygenase from Escherichia coli. J Biol Chem 265: 15154–15159.

    PubMed  CAS  Google Scholar 

  • Newman J and Gutteridge S (1993) The X-ray structure of Synechococcus ribulose-bisphosphate carboxylase/oxygenase-activated complex at 2.2 Å resolution. J Biol Chem 268: 25876–25886.

    PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer SA and Haselkorn R (1986) Differences in mRNA levels in Anabaena living freely or in symbiotic association with Azolla. EMBO J 5: 29–35.

    PubMed  CAS  Google Scholar 

  • Nierzwicki-Bauer SA, Curtis SE and Haselkorn R (1984) Cotranscription of genes encoding the small and large subunits of ribulose-1,5-bisphosphate carboxylase in the cyanobacterium Anabaena 7120. Proc Natl Acad Sci USA 81: 5961–5965.

    Article  PubMed  CAS  Google Scholar 

  • Norman EG and Colman B (1991) Purification and characterization of phosphoglycolate phosphatase from the cyanobacterium Coccochloris peniocystis. Plant Physiol 95: 693–698.

    Article  PubMed  CAS  Google Scholar 

  • Norris L, Norris RE and Calvin M (1955) A survey of the rates and products of short-term photosynthesis in plants of nine phyla. J Exp Bot 6: 64–74.

    Article  CAS  Google Scholar 

  • Owttrim GW and Colman B (1986) Purification and characterization of phosphoenolpyruvate carboxylase from a cyanobacterium. J Bacteriol 168: 207–212.

    PubMed  CAS  Google Scholar 

  • Padan E (1979) Facultative anoxygenic photosynthesis in cyanobacteria. Annu Rev Plant Physiol 30: 27–40.

    Article  CAS  Google Scholar 

  • Pate JS, Lindblad P and Atkins CA (1988) Pathways of assimilation and transfer of fixed nitrogen in coralloid roots of cycad-Nostoc symbioses. Planta 176: 461–471.

    Article  CAS  Google Scholar 

  • Parry MAJ, Madgwick P, Parmer S, Cornelius MJ and Keys AJ (1992) Mutations in loop six of the large subunit of ribulose-1,5-bisphosphate carboxylase affect substrate specificity. Planta 187: 109–112.

    CAS  Google Scholar 

  • Paul JH, Cazares L and Thurmond J (1990) Amplification of the rbcL gene from dissolved and particulate DNA from aquatic environments. Appl Environ Microbiol 56: 1963–1966.

    PubMed  CAS  Google Scholar 

  • Paul K, Morell MK and Andrews TJ (1991) Mutations in the small subunit of ribulosebisphosphate carboxylase affect subunit binding and catalysis. Biochemistry 30: 10019–10026.

    Article  PubMed  CAS  Google Scholar 

  • Pelroy RA and Bassham JA (1972) Photosynthetic and dark carbon metabolism in unicellular blue-green algae. Arch Mikrobiol 86: 25–38.

    Article  PubMed  CAS  Google Scholar 

  • Pelroy PA and Bassham JA (1976) Kinetics of light-dark CO2 fixation and glucose assimilation by Aphanocapsa. J Bacteriol 128: 633–643.

    PubMed  CAS  Google Scholar 

  • Pichard SL and Paul JH (1991) Detection of gene expression in genetically engineered microorganisms and natural phyto-plankton populations in the marine environment by mRNA analysis. Appl Environ Microbiol 57: 1721–1727.

    PubMed  CAS  Google Scholar 

  • Pierce J, Carlson TJ and Williams JGK (1989) A cyanobacterial mutant requiring the expression of ribulose bisphosphate carboxylase from a photosynthetic anaerobe. Proc Natl Acad Sci USA 86: 5753–5757.

    Article  PubMed  CAS  Google Scholar 

  • Portis AR, Jr (1990) Rubisco activase. Biochim Biophys Acta 1015: 15–28.

    Article  PubMed  CAS  Google Scholar 

  • Portis AR, Jr (1992) Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Ann Rev Plant Physiol Plant Mol Biol 43: 415–437.

    Article  CAS  Google Scholar 

  • Portis AR, Jr, Salvucci ME and Ogren WL (1986) Activation of ribulosebisphosphate carboxylase/oxygenase at physiological CO2 and ribulosebisphosphate concentrations by rubisco activase. Plant Physiol 82: 967–971.

    Article  PubMed  CAS  Google Scholar 

  • Ramage RT and Bohnert HJ (1989) Identification of an assembly domain in the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 86: 1198–1202.

    Article  PubMed  Google Scholar 

  • Read BA and Tabita RF (1992a) Amino acid substitutions in the small subunit of ribulose-1,5-bisphosphate carboxylase/ oxygenase that influence catalytic activity of the holoenzyme. Biochemistry 31: 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Read BA and Tabita FR (1992b) A hybrid ribulosebisphosphate carboxylase/oxygenase enzyme exhibiting a substantial increase in substrate specificity factor. Biochemistry 31: 5554–5560.

    Google Scholar 

  • Read BA and Tabita FR (1992c) Catalytic properties of a hybrid ribulose bisphosphate carboxylase/oxygenase enzyme containing cyanobacterial large subunits and diatom small subunits. FASEB J 6: A209.

    Google Scholar 

  • Read BA and Tabita FR (1994) High substrate specificity factor ribulose bisphosphate carboxylase/oxygenase from eukaryotic marine algae and properties of recombinant cyanobacterial rubisco containing ‘algal’ residue modifications. Arch Biochem Biophys, in press.

    Google Scholar 

  • Reichelt BY and Delaney SF (1983) The nucleotide sequence for the large subunit of ribulose 1,5-bisphosphate carboxylase from a unicellular cyanobacterium, Synechococcus PCC 6301. DNA 2: 121–129.

    Article  PubMed  CAS  Google Scholar 

  • Renström E and Bergman B (1989) Glycolate metabolism in cyanobacteria. I. Glycolate excretion and phosphoglycolate phosphatase activity. Physiol Plant 75: 137–143.

    Google Scholar 

  • Robinson SP and Portis AR Jr (1988) Involvement of stromal ATP in the light activation of ribulose-1,5-bisphosphate carboxylase/oxygenase in intact isolated chloroplasts. Plant Physiol 86: 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Robinson SP and Portis AR Jr (1989) Ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein prevents the in vitro decline in activity of ribulose-1,5-bisphosphate carboxylase/ oxygenase. Plant Physiol 90: 968–971.

    Article  PubMed  CAS  Google Scholar 

  • Roesler KR and Ogren WL (1990) Primary structure of Chlamydomonas reinhardtii ribulose 1,5-bisphosphate carboxylase/oxygenase activase and evidence for a single polypeptide. Plant Physiol 94: 1837–1841.

    Article  PubMed  CAS  Google Scholar 

  • Roy H and Cannon S (1988) Ribulose bisphosphate carboxylase assembly: what is the role of the large subunit binding protein?. Trends Biochem Sci 13: 163–165.

    Article  PubMed  CAS  Google Scholar 

  • Roy H, Bloom M, Milos P and Monroe M (1982) Studies on the assembly of large subunits of ribulose bisphosphate carboxylase in isolated pea chloroplasts. J Cell Biol 94: 20–27.

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Portis AR Jr and Ogren WE (1985) A soluble chloroplast protein catalyzes ribulosebisphosphate carboxylase/ oxygenase activation in vivo. Photosynth Res 7: 193–200.

    Article  CAS  Google Scholar 

  • Salvucci ME, Portis AR, Jr and Ogren WE (1986) Light and CO2 response of ribulose-1,5-bisphosphate carboxylase/oxygenase activation in Arabidopsis leaves. Plant Physiol 80: 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Knight S, Andersson I, Branden C-Y, Lindqvist Y, and Lundqvist T (1990a) Comparison of the crystal structures of L2 and L8S8 rubisco suggests a functional role for the small subunit. EMBO J 9: 2045–2050.

    PubMed  CAS  Google Scholar 

  • Schneider G, Lindqvist Y and Lundqvist T (1990b) Crystal-lographic refinement and structure of ribulose-15,-bisphosphate carboxylase from Rhodospirillum rubrum at 1.7 Å resolution. J Mol Biol 211: 989–1008.

    Article  PubMed  CAS  Google Scholar 

  • Schwarz R, Lieman-Hurwitz J, Hassidim M and Kaplan A (1992) Phenotypic complementation of high CO2-requiring mutants of the cyanobacterium Synechococcus sp. strain PCC 7942 by inosine 5′-monophosphate. Plant Physiol 100: 1987–1993.

    Article  PubMed  CAS  Google Scholar 

  • Serra JL, Llama MJ, Rowell P and Stewart WDP (1989) Purification and characterization of phosphoribulokinase from the N2-fixing cyanobacterium Anabaena cylindrica. Plant Science 59: 1–9.

    Article  CAS  Google Scholar 

  • Shen JB, Orozco EM Jr and Ogren WL (1991) Expression of the two isoforms of spinach ribulose 1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain. J Biol Chem 266: 8963–8968.

    PubMed  CAS  Google Scholar 

  • Shinozaki K and Sugiura M (1983) The gene for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase is located close to the gene for the large subunit in the cyanobacterium Anacystis nidulans 6301. Nucl Acids Res 11: 6957–6964.

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki K and Sugiura M (1985) Genes from the large and small subunits of ribulose-1,5-bisphosphate carboxylase/ oxygenase constitute a single operon on a cyanobacterium Anacystis nidulans 6301. Mol Gen Genet 200: 27–32.

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamada C, Takahata N and Sugiura M (1983) Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Proc Natl Acad Sci USA 80: 4050–4054.

    Article  PubMed  CAS  Google Scholar 

  • Slater JH (1975) The control of carbon dioxide assimilation and ribulose 1,5-diphosphate carboxylase activity in Anacystis nidulans grown in a light-limited chemostat. Arch Microbiol 103: 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Smith AJ (1982) Modes of cyanobacterial carbon metabolism. In: Carr NG and Whitton BA (eds) The Biology of Cyanobacteria, pp 47–85. Blackwell, Oxford.

    Google Scholar 

  • Smrcka AV, Bohnert HJ and Jensen RG (1991a) Modulation of the tight binding of carboxyarabinitol 1,5-bisphosphate to the large subunit of ribulose 1,5-bisphosphate carboxylase/ oxygenase. Arch Biochem Biophys 286: 14–19.

    Article  PubMed  CAS  Google Scholar 

  • Smrcka AV, Ramage RT, Bohnert HJ and Jensen RG (1991b) Purification and characterization of large and small subunits of ribulose 1,5-bisphosphate carboxylase expressed separately in Escherichia coli. Arch Biochem Biophys 286: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg NA and Meeks JC (1989) Photosynthetic CO2 fixation and ribulose bisphosphate carboxylase/oxygenase activity of Nostoc sp. strain UCD 7801 in symbiotic association with Anthoceros punctatus. J Bacteriol 171: 6227–6233

    PubMed  CAS  Google Scholar 

  • Su X and Bogorad L (1991) A residue substitution in phosphoribulokinase of Synechocystis PCC 6803 renders the mutant light-sensitive. J Biol Chem 266: 23698–23705.

    PubMed  CAS  Google Scholar 

  • Tabita FR (1980) Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. J Bacteriol 143: 1275–1280.

    PubMed  CAS  Google Scholar 

  • Tabita FR (1981) Molecular regulation of carbon dioxide assimilation in autotrophic microorganisms. In: Dalton H (ed) Microbial Growth on C1 Compounds, pp 70–81. Heydon and Sons, London.

    Google Scholar 

  • Tabita FR (1987) Carbon dioxide fixation and its regulation in cyanobacteria. In: Fay, P and Van Baalen C (eds) The Cyanobacteria, pp 96–117. Elsevier, Amsterdam.

    Google Scholar 

  • Tabita FR (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol Rev 52: 155–189.

    PubMed  CAS  Google Scholar 

  • Tabita FR and Colletti C (1979) Carbon dioxide assimilation in cyanobacteria: regulation of ribulose 1,5-bisphosphate carboxylase. J Bacteriol 140: 452–458.

    PubMed  CAS  Google Scholar 

  • Tabita FR and McFadden BA (1972) Regulation of ribulose-1,5-diphosphate carboxylase by 6-phospho-D-gluconate. Biochem Biophys Res Commun 48: 1153–1159.

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR and McFadden BA (1974a) D-ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum. I. Levels, purification, and effect of metallic ions. J Biol Chem 249: 3453–3458.

    PubMed  CAS  Google Scholar 

  • Tabita FR and McFadden BA (1974b) D-Ribulose 1,5-diphosphate carboxylase from Rhodospirillum rubrum. II. Quaternary, structure, composition, catalytic and immunological properties. J Biol Chem 249: 3459–3464.

    PubMed  CAS  Google Scholar 

  • Tabita FR and Small CL (1985) Expression and assembly of active cyanobacterial ribulose-1,5-bisphosphate carboxylase/ oxygenase in Escherichia coli containing stoichiometric amounts of large and small subunits. Proc Natl Acad Sci USA 82: 6100–6103.

    Article  PubMed  CAS  Google Scholar 

  • Tabita FR, Gibson JL, Bowien B, Dijkhuizen L and Meijer W (1992) Uniform designation for genes of the Calvin-Benson-Bassham reductive pentose phosphate pathway of bacteria. FEMS Microbiol Lett 99: 107–110.

    Article  CAS  Google Scholar 

  • Tabita FR, Gibson JL, Falcone DL, Wang X, Li LA, Read BA, Terlesky KC and Paoli GC (1993) Current studies on the molecular biology and biochemistry of CO2 fixation in phototrophic bacteria. In: Murrell C and Kelly PD (eds) Microbial Growth on C1 Compounds, pp 469–479. Intercept, Andover.

    Google Scholar 

  • Voordouw G, DeVries PA, Van den Berg WAM and DeClerk EPJ (1987) Site-directed mutagenesis of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from Anacystis nidulans. Eur J Biochem 163: 591–598.

    Article  PubMed  CAS  Google Scholar 

  • Wagner SJ, Thomas SP, Kaufman RI, Nixon BT and Stevens SE Jr (1993) The glnA gene of the cyanobacterium Agmenellum quadruplicatum PR-6 is nonessential for ammonium assimilation. J Bacteriol 175: 604–612.

    PubMed  CAS  Google Scholar 

  • Wassmann CC, Ramage RT and Bohnert HJ (1989) Identification of an assembly domain in the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc Natl Acad Sci USA 86: 1198–1202.

    Article  Google Scholar 

  • Werneke JM and Ogren WL (1989) Structure of an Arabidopsis thaliana cDNA encoding rubisco activase. Nucl Acids Res 17: 2871.

    Article  PubMed  CAS  Google Scholar 

  • Werneke JM, Zielinski RE and Ogren WL (1988) Structure and expression of spinach leaf cDNA encoding ribulose-bisphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci USA 85: 787–791.

    Article  PubMed  CAS  Google Scholar 

  • Zeilstra-Ryalls J, Fayet O and Georgopoulos C (1991) The universally conserved GroE (Hsp60) chaperonins. Ann Rev Microbiol 45: 301–325.

    Article  CAS  Google Scholar 

  • Zhu G and Jensen RG (1991a) Xylulose 1,5-bisphosphate synthesized by ribulose 1,5-bisphosphate carboxylase/ oxygenase during catalysis binds to decarbamylated enzyme. Plant Physiol 97: 1348–13531.

    Article  PubMed  CAS  Google Scholar 

  • Zhu G and Jensen RG (1991b) Fallover of ribulose 1,5-bisphosphate carboxylase/oxygenase activity. Plant Physiol 97: 1354–1358.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tabita, F.R. (1994). The Biochemistry and Molecular Regulation of Carbon Dioxide Metabolism in Cyanobacteria. In: Bryant, D.A. (eds) The Molecular Biology of Cyanobacteria. Advances in Photosynthesis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0227-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0227-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3273-2

  • Online ISBN: 978-94-011-0227-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics