Skip to main content

Mechatronically Designed Magnetic Bearings for High-Speed Spindles and Rotors

  • Chapter
Mechatronic Design in Textile Engineering

Part of the book series: NATO ASI Series ((NSSE,volume 279))

Abstract

Contact-free Magnetic Bearings are a typical mechatronic product, and they have some distinct advantages. They do not generate wear and they do not need lubrication. Therefore, they have a potential for long lifetime and low maintenance costs. These features make them attractive, among other applications, for textile machinery.

This chapter presents the state of the art for the design of an electromagnetic bearing system. It introduces first the main elements and then discusses control and system aspects. The characteristics of such a suspension system are detailed. Several applications will be demonstrated, and future trends are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, M.: A study on fundamentals of mechanically controlled permanent magnet levitation system for Maglev transportation vehicle. 1 lth Intl. Conf. on Magnetically Levitated Vehicles and Linear Drives, MAGLEV’ 89, July 1989, Yokohama, Japan.

    Google Scholar 

  2. Ackermann, J.: Abtastregelung. Springer Verlag, Berlin, 1983.

    Book  Google Scholar 

  3. Beams, J.W.; Young, J.L.; Moore, J.W.: The production of high centifugal fields. J. Appl. Phys., 1946, 886-890.

    Google Scholar 

  4. Bichsel, J.: The bearingless electrical machine. Intl Symp. on Magn. Susp. Techn., NASA Langley Res. Center, Hampton, VA, Aug. 1991.

    Google Scholar 

  5. Bleuler, H.: Decentralized Control of Magnetic Bearing Systems. Diss. ETH Zürich 7573, 1984.

    Google Scholar 

  6. Bleuler, H.; Salm, J.: Control of Rotor Vibrations with a Signal Processor. Proc. 4th Internat. Conf. on Vibrations in Rotating Machinery, I.Mech.E, Edinburgh, Sept. 1988.

    Google Scholar 

  7. Bleuler, H.; Schweitzer, G.; Traxler, A.; Vischer D.; Zlatnik, D.: New Concepts for Low-Cost Mechatronics; Magnetic Bearing Example. IFAC Symposium on Low Cost Automation, LCA’89, Milano, November 1989.

    Google Scholar 

  8. Boden, K.: Wide-Gap, Electro-Permanentmagnetic Bearing System with Radial Transmission of Radial and Axial Forces. In /SCHW 88/, 41-52.

    Google Scholar 

  9. Braunbek, W.: Frei schwebende Körper im elektrischen und magnetischen Feld. Z. Phys., 112 (1939), 753–763.

    Article  MATH  Google Scholar 

  10. Burrows, C.R.; Sahinkaya, N.; Traxler, A.; Schweitzer, G.: Design and Application of a Magnetic Bearing for Vibration Control and Stabilization of a Flexible Rotor. In Proc. First Intl. Symp. Magnetic Bearings, ETH Zürich, May 1988. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  11. Diez, D.; Schweitzer, G.: Integrated Simulation, Test and Diagnostics for a Safety Design of Magnetic Bearing-Prototypes. IUTAM/IFAC-Symposium on Dynamics of Controlled Mechanical Systems, ETH Zurich, May 1988, Springer Verlag, 1988.

    Google Scholar 

  12. Dussaux, M.: The Industrial Applications of the Active Magnetic Bearing Technology. In /HIGU 90/, 33-38.

    Google Scholar 

  13. Earnshaw, S.: On the nature of the molecular forces which regulate the constitution of the lumiferous ether. Trans. Camb. Phil. Soc. 7 (1842), 97–112.

    Google Scholar 

  14. Fremerey, J.K.: Radial Shear Force Permanent Magnetic Bearing System with Zero-Power Axial Control & Passive Radial Damping. In /SCHW 88/, 25-32.

    Google Scholar 

  15. Fumagalli, M.; Feeny, B.; Schweitzer, G.: Dynamics of Rigid Rotors in Retainer Bearings. Third Intl. Symp. on Magnetic Bearings, Washington D.C., July 1992, to appear.

    Google Scholar 

  16. Gasch, R.; Pfützner, H.: Rotordynamik. Springer-Verlag, Berlin, 1975.

    Google Scholar 

  17. Gottzein, E.: Das “Magnetische Rad” als autonome Funktionseinheit modularer Trag-und Führssysteme für Magnetbahnen. Fortschr.-Ber. VDI-Z, Reihe 8, Nr. 68, 1984.

    Google Scholar 

  18. Higuchi, T. (ed.): Magnetic Bearings. Proc. Sec. Internat. Sympos. on Magnetic Bearings, Tokyo University, July 1990.

    Google Scholar 

  19. Larsonneur, R.: Design and control of active magnetic bearing systems for high speed rotation. Diss. ETH Zürich No. 9140, 1990.

    Google Scholar 

  20. Larsonneur, R.; Siegwart, R.; Traxler, A.: Active magnetic bearing control strategies for solving vibration problems in industrial rotor systems. 5th Intl. Conf. on Vibrations in Rotating Machinery (IMechE), Bath, UK, Sept. 1992, to appear.

    Google Scholar 

  21. Moon, F.C.; Chang, P.Z.: High-speed rotation of magnets on high-Tc superconducting bearings. J.Appl. Phys., Vol. 56, 1990, 397–399.

    Google Scholar 

  22. Schweitzer, G.; Bleuler, H.; Traxler, A.: Magnetlager. Springer-Verlag, Berlin, to appear 1992.

    Google Scholar 

  23. Schweitzer, G. (ed.): Magnetic Bearings. First Internat. Symp. on Magnetic Bearings, Zürich, Juni 1988. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  24. Schweitzer, G.: Magnetic Bearings. In Rieger, N.F., ed.: Rotordynamics 2, Problems in Tuibomachinery, chapter 11. Springer-Verlag, Wien, 1988.

    Google Scholar 

  25. Schweitzer, G.: Magnetic Bearings — Application, Concepts, Theory. JSME Internat. J., Ser. III, 1990, 13–18.

    Google Scholar 

  26. Schwarz, H.: Optimale Regelung linearer Systeme. Bibliographisches Institut Mannheim/Wien/Zürich B.I. Wissenschaftsverlag, 1976.

    MATH  Google Scholar 

  27. Schweitzer, G.; Lange, R.: Characteristics of a Magnetic Rotor Bearing for Active Vibration Control. Conference on Vibrations in Rotating Machinery, Cambridge, U.K., Sept. 1976.

    Google Scholar 

  28. Siegwart, R.; Traxler, A.: Möglichkeiten und Grenzen schneller Aktuatoren am Beispiel einer magnetisch gelagerten Hochgeschwindigkeits-Frässpindel. VDI-Tagung Mechatronik “Kontrollierte Bewegungen im Fahrzeug-und Maschinenbau. Bad Homburg, Nov. 1989.

    Google Scholar 

  29. Szczygielski, W.; Schweitzer, G.: Dynamics of a High Speed Rotor Touching a Boundary. In Bianchi/ Schiehlen (eds): Dynamics of Multibody Systems. Proc. IUTAM/IFToMM Symposium, Udine. Springer-Veriag, Berlin, 1987.

    Google Scholar 

  30. Traxler, A.: Eigenschaften und Auslegung von berührungsfreien elektromagnetischen Lagern. Diss. ETH Zürich Nr. 7851, 1985.

    Google Scholar 

  31. Vischer, D.; Bleuler, H.: A New Approach to Sensorless and Voltage Controlled AMBs based on Network Theory Concepts. 2nd Int. Symposium on Magnetic Bearings, T. Higuchi (ed.), University of Tokyo, Juli 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schweitzer, G. (1995). Mechatronically Designed Magnetic Bearings for High-Speed Spindles and Rotors. In: Acar, M. (eds) Mechatronic Design in Textile Engineering. NATO ASI Series, vol 279. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0225-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0225-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4101-0

  • Online ISBN: 978-94-011-0225-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics