Skip to main content

Numerical and Experimental Study of Porosity Evolution during Plasma Spray Deposition of W

  • Chapter
Science and Technology of Rapid Solidification and Processing

Part of the book series: NATO ASI Series ((NSSE,volume 278))

  • 214 Accesses

Abstract

The porosity that is commonly associated with discrete droplet processes, such as plasma spraying and spray deposition, effectively degrades the quality of the sprayed material. In the present paper, numerical and experimental studies on porosity evolution in plasma spray deposition of W are undertaken to provide insight into the formation and evolution of porosity. In the numerical study, deformation, interaction and solidification of molten droplets impinging onto a flat and non-flat substrate during plasma spraying are investigated. The full Navier-Stokes equations coupled with the Volume Of Fluid (VOF) function are solved to determine the exact movement and interaction of droplets. A 2-domain method is employed for the treatment of the thermal field and solidification problem within the flattening droplet to track the moving solid/liquid interface. A two-phase flow continuum model is employed for the simulation of the flow problem with a growing solid layer during droplet impingement. On the basis of the VOF function and the two-phase flow continuum model the micro-porosity is quantitatively calculated. In the experimental study, a W deposit of 2 - 3 mm in thickness is prepared using low pressure plasma spraying (LPPS). The microstructure of the deposit is characterized in detail, paying particular attention to the presence of porosity. The mechanisms that govern the formation of porosity during LPPS are proposed in light of numerical and experimental results. On the basis of the mechanisms, some fundamental trends and effects of important processing parameters on micro-porosity may be reasonably explained and optimal processing conditions for reducing microporosity may be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Musil and J. Fiala, Plasma Spray Deposition of Graded Metal Ceramic Coatings, Surface & Coatings Technology ,vol. 52, no. 3, pp. 211–220, 1992.

    Article  CAS  Google Scholar 

  2. J. Chen, G. Craig, E. Farley and A. Sanjurjo, Titanium-based Coatings on Steel DIP Coating and Plasma Spray, Surface & Coatings Technology ,vol. 49, no. 1–3, pp. 116–120, 1991.

    Article  CAS  Google Scholar 

  3. R. Tiwari, H. Herman, S. Sampath and B. Gudmundsson, Plasma Spray Consolidation of High Temperature Composites, Mater. Sci. Eng. A ,vol. 144, pp. 127–131, 1991.

    Article  Google Scholar 

  4. D. Apelian, M. Paliwal, R.W. Smith and W.F. Schilling, Melting and Solidification in Plasma Spray Deposition -- - Phenomenological Review, Int. Metals Review ,vol. 28, pp. 271–294, 1983.

    Article  CAS  Google Scholar 

  5. D. Wei, B. Farouk and D. Apelian, Effects of Particle Loading on a Reduced Pressure Inductively Coupled Radio Frequency Plasma Torch, Metall. Trans. B ,vol. 20, no. 6, pp. 949–958, 1989.

    Article  Google Scholar 

  6. D. Wei, D. Apelian and B. Farouk, Particle Melting in High Temperature Supersonic Low Pressure Plasma Jets, Metall. Trans. B ,vol. 20, no. 2, pp. 251–262, 1989.

    Article  Google Scholar 

  7. R.C. Dykhuizen and M.F. Smith, Investigations into the Plasma Spray Process, Surface & Coatings Technology ,vol. 37, no. 4, pp. 349–358, 1989.

    Article  Google Scholar 

  8. R.W. Smith and D. Apelian, Plasma Spray Consolidation of Materials, Pure and Applied Chemistry ,vol. 62, no. 9, pp. 1825–1832, 1990.

    Article  CAS  Google Scholar 

  9. R. Knight, R.W. Smith and D. Apelian, Application of Plasma ARC Melting Technology to Processing of Reactive Metals, Int. Mater. Reviews ,vol. 36, no. 6, pp. 221–252, 1991.

    CAS  Google Scholar 

  10. R. Westhoff, G. Trapaga and J. Szekely, Plasma-Particle Interactions in Plasma Spraying Systems, Metall. Trans. B ,vol. 23, no. 6, pp. 683–693, 1992.

    Article  Google Scholar 

  11. H. Jones, Cooling, Freezing and Substrate Impact of Droplets Formed by Rotary Atomization, J. Phys. D.: Applied Physics ,vol. 4, pp. 1657–1660, 1971.

    Article  CAS  Google Scholar 

  12. J. Madejski, Solidification of Droplets on a Cold Surface, Int. J. Heat Mass Transfer ,19, pp. 1009–1013, 1976.

    Article  Google Scholar 

  13. C. San Marchi, H. Liu, A. Sickinger, E. Mühlberger, E.J. Lavernia and R.H. Rangel, Numerical Analysis of the Deformation and Solidification of a Single Droplet Impinging onto a Flat Substrate, J. Mater. Sci. ,vol. 28, pp. 3313–3321, 1993.

    Article  Google Scholar 

  14. H. Liu, E.J. Lavernia and R. H. Rangel, Numerical Simulation of Impingement of Molten Ti, Ni and W Droplets on a Flat Substrate, J. Thermal Spray Technology ,vol. 2, no. 4, pp. 369–378, 1993.

    Article  CAS  Google Scholar 

  15. H. Liu, E.J. Lavernia and R.H. Rangel, Numerical Simulation of Substrate Impact and Freezing of Droplets in Plasma Spray Processes, J. Phys. D: Appl. Phys. ,vol. 26, pp. 1900–1908, 1993.

    Article  Google Scholar 

  16. G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metall. Trans. B ,vol. 22B, pp. 901–914, 1991.

    Article  CAS  Google Scholar 

  17. G. Trapaga, E.F. Matthys, J.J. Valencia and J. Szekely, Fluid flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates - - Comparison of Numerical and Experimental Results, Metall. Trans. B ,vol. 23B, pp. 701–718, 1992.

    Article  Google Scholar 

  18. S. Fantassi, M. Vardelle, A. Vardelle, and P. Fauchais, Influence of the Velocity of Plasma Sprayed Particles on the Splat Formation, Proc. of the 1993 National Thermal Spray Conference ,Anaheim, CA, 7–11 June 1993, pp. 1–6.

    Google Scholar 

  19. M. Rappaz, Modeling of Microstructure Formation in Solidification Processes, Int. Mater. Rev. ,vol. 34, no. 3, pp. 93–123, 1989.

    CAS  Google Scholar 

  20. J.M. Hill, One-dimensional Stefan Problems: an Introduction ,Longman Scientific & Technical, John Wiley & Sons, Inc., New York, 1987.

    Google Scholar 

  21. D.B. Kothe, R.C. Mjolsness and M.D. Torrey, RIPPLE: A Computer Program for Incompressible Flows with Free Surfaces, LA-12007-MS, UC-000 ,1991.

    Google Scholar 

  22. M. R. Jackson, P. A. Siemers, S. F. Rutkowski and G. Frind, Refractory Metal Structures Produced by Low Pressure Plasma Deposition, Inter. J. Refrac. & Hard Metals ,vol. 8, no. 3, pp. 196–200, 1989.

    CAS  Google Scholar 

  23. R.A. Neiser, R.D. Watson, G.R. Smolik and K.J. Hollis, An Evaluation of Plasma Sprayed Tungsten for Fusion Reactors, in Proc. of the 1993 National Thermal Spray Conference ,Anaheim, CA, 7–11 June 1993, pp. 303–308.

    Google Scholar 

  24. A. Itoh, M. Hirata and M. Ayagaki, Effects of Substrate Temperature During Spraying on the Properties of Sprayed Coatings, in Proc. of the 1993 National Thermal Spray Conference ,Anaheim, CA, 7–11 June 1993, pp. 593–600.

    Google Scholar 

  25. J. Shackelford and W. Alexander, The CRC Materials Science and Engineering Handbook ,CRC Press, 1992.

    Google Scholar 

  26. D. Apelian, R. W. Smith and D. Wei, Particle Melting and Droplet Consolidation During Low Pressure Plasma Deposition, Powder Metall. Int. ,vol. 20, no. 2, pp. 7–10, 1988.

    CAS  Google Scholar 

  27. Z. Z. Mutasim and R. W. Smith, Low Pressure Plasma Spray Deposition of W-Ni Fe Alloy, Tungsten and Tungsten Alloys - Recent Advances ,ed. A. Crowson and E. S. Chen, TMS, 1991, pp. 69–73.

    Google Scholar 

  28. R. W. Smith and Z. Z. Mutasim, Plasma Sprayed Refractory Metal Structures and Properties, Thermal Spray Research and Applications ,ed. T. F. Bernecki, ASM International, 1990, pp. 369–374.

    Google Scholar 

  29. H. Grüner, Vacuum Plasma Spray Quality Control, Thin Solid Films ,vol. 118, pp. 409–420, 1984.

    Article  Google Scholar 

  30. H. Liu, E. J. Lavernia and R. H. Rangel, Numerical Investigation of Micro-Pore Formation During Substrate Impact of Molten Droplets in Plasma Spray Processes, Atomization and Sprays ,accepted, 1994.

    Google Scholar 

  31. J. McKelliget, J. Szekely, M. Vardelle and P. Fauchais, Temperature and Velocity Fields in a Gas Stream Exiting a Plasma Torch. A Mathematical Model and Its Experimental Verification, Plasma Chem. & Plasma Proc ,vol. 2, no. 3, pp. 316–332, 1982.

    Google Scholar 

  32. W. Cai, H. Liu, E.J. Lavernia, A. Sickinger, E. Mühlberger and D. Bailey: Low Pressure Plasma Deposition of W, J. Thermal Spray Technology ,in press, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Liu, H., Cai, W., Rangel, R.H., La vernia, E.J. (1995). Numerical and Experimental Study of Porosity Evolution during Plasma Spray Deposition of W. In: Otooni, M.A. (eds) Science and Technology of Rapid Solidification and Processing. NATO ASI Series, vol 278. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0223-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0223-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4100-3

  • Online ISBN: 978-94-011-0223-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics