Skip to main content

Grain Boundary Deformation and Fracture of a Fine Grained, High Purity Al-2% Mg Alloy at 150° C (423K)

  • Chapter
Book cover Science and Technology of Rapid Solidification and Processing

Part of the book series: NATO ASI Series ((NSSE,volume 278))

  • 209 Accesses

Abstract

Intercrystalline deformation and fracture at elevated temperatures are well established phenomena, and are relatively well defined in terms of temperature, stress and grain size. Grain boundary sliding, leading to intercrystalline fracture, is usually considered to be an embrittling behavior, and worsens with decreasing strain rate, decreasing grain size and increasing temperature. Very coarse grained metals and alloys avoid intercrystalline failures even at very high temperatures by undergoing slip and slip band deformation, even up to the melting temperature. Based on the rule that the slip band spacing is inversely proportional to the stress, coarse grained structures can accommodate coarse slip band spacings to very high temperatures. Following this reasoning, a high purity Al-2% Mg alloy, prepared with a grain size finer than about 10 mm, undergoes grain boundary sliding, minor grain boundary migration, and intercrystalline cracking at 150° C (423K). The extent of grain boundary sliding and cracking are a function of the grain size and the stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Hansen and M. A. Wheeler: Jour. Inst. of Metals 45 (1931) 229.

    Google Scholar 

  2. I.S. Servi and N. J. Grant: J. of Metals 3 10, (Oct. 1951) 909.

    CAS  Google Scholar 

  3. I. S. Servi and N. J. Grant: J. of Metals 3 10, (Oct. 1951) 917.

    CAS  Google Scholar 

  4. D. McLean: Jour. Inst. of Metals 80 (1951–52) 507.

    Google Scholar 

  5. H. C. Chang and N. J. Grant: Trans. AIME 194 (1952) 619.

    Google Scholar 

  6. N. J. Grant and A. G. Bucklin: Trans. ASM 45 (1953) 151.

    Google Scholar 

  7. H. C. Chang and N. J. Grant: Jour. Inst. of Metals 82 (1952–53) 229.

    Google Scholar 

  8. A. W. Mullendoie and N. J. Grant: Trans. AIME 200 (1954) 973.

    Google Scholar 

  9. G. D. Gemmell and N J. Grant: J. of Metals 9, No. 4, (April 1957) 417.`

    CAS  Google Scholar 

  10. V. Ramachandran and E. P. Abrahamson II: Scripta Met. 6 (1972) 287.

    Article  CAS  Google Scholar 

  11. N. Hanson: Acta Met. 21 (1977) 863.

    Article  Google Scholar 

  12. J. W. Wyrzykowski and M. W. Grabski: Mat. Sci. and Eng. 56 (1982) 869.

    Article  Google Scholar 

  13. J. T. Al-Haidary, N. J. Petch and E. R. DeLosRios: Phil Mag. A47 (1983) 869.

    Google Scholar 

  14. A. Lasalmonie and J. L. Strudel: J. Mat. Sci. 21 (1986) 1837.

    Article  CAS  Google Scholar 

  15. R. King, R. Cahn and B. Chalmers: Nature 161 (1948) 682.

    Article  Google Scholar 

  16. D. McLean: Jour. Inst. of Metals 81 (1952–53) 293.

    Google Scholar 

  17. H. C. Chang and N. J. Grant: Trans. AIME 192 (1953) 305.

    Google Scholar 

  18. H. C. Chang and N. J. Grant: Trans. AIME 206 (1956) 169.

    Google Scholar 

  19. H. Brunner and N. J. Grant: Trans. AIME 218 (1960) 122.

    CAS  Google Scholar 

  20. A. W. Mullendore and N. J. Grant: Trans. AIME 227 (1963) 319.

    CAS  Google Scholar 

  21. G. Rai and N. J. Grant: Trans. AIME 14A (1983) 1451.

    CAS  Google Scholar 

  22. S. J. Hales and T. R. NcNeeley: Acta Met. 36 (1988) 1229.

    Article  CAS  Google Scholar 

  23. W. D. Nix and J. C. Gibeling: 1983 ASM Material Sci. Seminar -Flow and Fracture at Elevated Temperatures ,edited by R. Raj, pp 1–64.

    Google Scholar 

  24. E. Orowan: Nature 142 (1941) 452.

    Article  Google Scholar 

  25. K. Yamaguchi, Sci. Papers Inst. Phys. and Chem. Res., Tokyo 8 (1928) 289.

    Google Scholar 

  26. M. F. Ashby: Phil. Mag. 21 (1970) 339.

    Article  Google Scholar 

  27. U. F. Kocks: Met Trans. 1 (1970) 1121.

    Google Scholar 

  28. A. W. Thompson, M. I. Baskes and W. F. Flanagan: Acta Met. 21 (1973) 1019.

    Article  Google Scholar 

  29. F. B. Cuff, Jr. and N. J. Grant: Trans. AIME 212 (1958) 355.

    CAS  Google Scholar 

  30. G. Y. Chin, W. F. Hosford, Jr. and W. A. Backofen: Trans AIME 230 (1964) 437.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chang, H.C., Grant, N.J. (1995). Grain Boundary Deformation and Fracture of a Fine Grained, High Purity Al-2% Mg Alloy at 150° C (423K). In: Otooni, M.A. (eds) Science and Technology of Rapid Solidification and Processing. NATO ASI Series, vol 278. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0223-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0223-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4100-3

  • Online ISBN: 978-94-011-0223-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics