Skip to main content

On Lyapounov Stability Theorems for Stochastic (Deterministic) Evolution Equations1

  • Chapter
Stochastic Analysis and Applications in Physics

Part of the book series: NATO ASI Series ((ASIC,volume 449))

Abstract

The purpose of this work is to present a review of the results related to some extensions of Lyapounov methods in the stability theory for the solutions of infinite-dimensional (stochastic and deterministic) evolution equations. As a consequence, one can derive results on the stability of solutions of stochastic partial and delay differential equations.

Article Note

Article Note

1Supported in part by ONR N00014-91-J-1087

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gellman R., (1960), Introduction to matrix analysis, McGraw Hill, New York.

    Google Scholar 

  2. Chow P.L., (1982), Stability of non-linear stochastic evolution equations, J. Math. Anal. and Appins., 89, pp. 400–409.

    Article  MATH  Google Scholar 

  3. Curtain R.F., (1981), Stability of stochastic partial differential equation, J. Math. Anal. and Appins., 79, pp. 352–369.

    Article  MathSciNet  MATH  Google Scholar 

  4. Daletskii Ju.L., Krein M.G., (1974), Stability of solutions of differential equations in Banach space, Transi. of Amer. Math. Soc. 43, Providence, R.I.

    Google Scholar 

  5. Daprato G. and Zabezyk J., (1992), Stochastic equations in infinite-dimensions, Cambridge University Press, New York.

    Google Scholar 

  6. Datko, R., (1970), Extending a theorem of A.M. Lyapounov to Hilbert space, J. Math. Anal. and Appins, 39, pp. 610–616.

    Article  MathSciNet  Google Scholar 

  7. Dunford N. and Schwartz J.T., (1963), Linear operators II Interscience, New York.

    Google Scholar 

  8. Hausman U.G., (1978), Asymptotic stability of the linear Ito equation in infinite dimensions, J. Math. Anal. Appins., 65, pp. 219–235.

    Article  Google Scholar 

  9. Ichikawa A., (1979), Dynamic programing approach to stochastic evolution equations, SIAM J. Control and Optim., 17, pp. 152–174.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ichikawa A., (1982), Stability of semilinear stochastic evolution equations, J. Math. Anal. Appins., 90, pp. 12–44.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ichikawa A., (1984), Semilinear stochastic evolution equations: Boundedness, stability and invariant measures, Stochastics, 12, pp. 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  12. Khasminskii R.Z., (1980), Stochastic stability of differential equations, Sijthoff and Noordoff, Netherlands.

    Book  Google Scholar 

  13. Khasminskii R.Z. and Mandrekar V., On stability of solutions of stochastic evolution equations. (To appear).

    Google Scholar 

  14. Krylov N.V. and Rozovskii B.L., (1981), Stochastic evolution equations, J. Soviet Math., 16, pp. 1233–1277.

    Article  MATH  Google Scholar 

  15. Loéve, M., (1959), Probability Theory. Van Nostrand, Princeton..

    Google Scholar 

  16. Metivier M. and Pellaumail J., (1980), Stochastic Integration, Academic Press, New York.

    MATH  Google Scholar 

  17. Pardoux E., (1979), Stochastic partial differential equations and filtering of diffusion processes, Stochastics, 3, pp. 127–167.

    Article  MathSciNet  MATH  Google Scholar 

  18. Pazy A., (1983), Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  19. Pazy A., (1972), On the applicability of Lyapounov’s theorem in Hilbert space, SIAM J. Math. and Anal., 3, pp. 291–294.

    Article  MathSciNet  MATH  Google Scholar 

  20. Rozovskii B.L., (1990), Stochastic evolution systems, Kuwer Academic Publishers, Boston.

    MATH  Google Scholar 

  21. Slemrod, M., (1976), Asymptotic behaviour of Co-semigroups as determined by the spectrum of the generator, Indiana University, Math. J., 783–792.

    Google Scholar 

  22. Tanabe H., (1979), Equations of evolution, Pitman.

    Google Scholar 

  23. Yosida K., (1965), Functional analysis, Springer-Verlag, New York.

    MATH  Google Scholar 

  24. Zabezyk J., (1979), On the stability of infinite-dimensional linear stochastic systems, Banach Center Publ., 5, PWN-Polish Scientific Publishers.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mandrekar, V. (1994). On Lyapounov Stability Theorems for Stochastic (Deterministic) Evolution Equations1 . In: Cardoso, A.I., de Faria, M., Potthoff, J., Sénéor, R., Streit, L. (eds) Stochastic Analysis and Applications in Physics. NATO ASI Series, vol 449. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0219-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0219-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4098-3

  • Online ISBN: 978-94-011-0219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics