Skip to main content

On the Motion of Small Particles of Elongated Form. Suspended in a Viscous Liquid

  • Chapter
Book cover Selected Papers of J. M. Burgers

Abstract

Introductory remarks. As stated in the preceding Chapter, p. 97, a discussion of the influence of suspended particles upon the viscosity of a liquid requires the consideration of the mathematical theory of the motion of such particles. The subject has received much attention in the existing literature, and apart from the classical work by Einstein and by Jeffery and from various subsidiary papers, mention must be made of the reviews which recently have been given by Guth and Mark in the “Ergebnisse der exakten Naturwissenschaften” 1), and by Guth and others in a series of papers which have appeared in the ‘‘KolloicUZeitschrift’’ 2). Nevertheless the Committee has considered it desirable to insert an account of some of the mathematical calculations into the present Report, as it seemed possible to arrange the matter in a form which brings out certain points involved in the theory in a more direct way. At the same time a few details which occurred in Guth’s paper no. 5, could be treated somewhat differently, and numerical evaluations of various formulae have been added. Further a discussion has been given of the information that can be derived from the results of some experimental investigations which have been published in recent years, in particular of Signer’s work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Guth und H. Mark, Die Viskosität von Lösungen, besonders von Lösungen hochmolekularer Stoffe, Ergebnisse der exakten Naturwissenschaften 12, p. 115, 1933.

    Article  ADS  Google Scholar 

  2. E. Guth, Uber die Viskosität von Suspensionen, Kolloid-Zeitschr. 74, p. 147, 1936.

    Article  Google Scholar 

  3. W. Krasny-Ergen, Zur Théorie der Elektro viskosität, Kolloid-Zeitschr. 74, p. 172, 1936.

    Article  Google Scholar 

  4. E. Guth und R. Simha, Über die Viskosität von Kugelsuspensionen (Zur Berechnung des Wandeinflusses und der Wechselwirkung bei der Viskosität, sowie bei rotierenden Kugeln), Kolloid-Zeitschr. 74, p. 266, 1936.

    Article  Google Scholar 

  5. F. Elrich, M. Bunzl und H. Margaretha, Über die Viskosität von Kugelsuspensionen (experimentell), Kolloid-Zeitschr. 74, p. 276, 1936.

    Article  Google Scholar 

  6. E. Guth, Über den Einfluss der Brownschen Bewegung auf die Viskosität von Ellipsoidsuspensionen, Kolloid-Zeitschr., 75,p. 15, 1936.

    Article  Google Scholar 

  7. F. Elrich, H. Margaretha, und M. Bunzl, Über die Viskosität von Stäbchensuspensionen (experimentell), Kolloid-Zeitschr. 75, p. 20, 1936.

    Article  Google Scholar 

  8. Compare: C. W. Oseen, Hydrodynamik (Leipzig 1927). EQUATION (2.1) have been deduced from Oseen’s formulae (IIIc), p. 35

    Google Scholar 

  9. C. W. Oseen, Hydrodynamik (Leipzig 1927), p. 174. The formula may be also found in H. Lamb, Hydrodynamics (Cambridge 1933), Art. 343a, p. 617, eq. (16).

    Google Scholar 

  10. The simplified method introduced here for calculating the resistance of a cylindrical or spindle-shaped body may be compared to a device used by W. Kuhn in certain papers (comp. e.g.: Ueber Teilchenform und Teilchengrösse aus Viskosität und Strömungsdoppelbrechung, Zeitschr. f. physik. Chemie A 161, p. 1, 1932; Dehnungsdoppelbrechung von Kolloiden in Lösungen, ibid., p. 427). Kuhn considers particles built up from spheres, and calculates the total resistance experienced by these spheres. In his calculations, however, the mutual influence of the various spheres upon each other is neglected. In the method given in the text the corresponding effect, — which is not negligible and which, speaking generally, is responsible for the appearance of the logarithmic terms in the resistance formulae (which are missing in Kuhn’s formulae) — comes to its proper significance in the function f(ξ) introduced in (5. 1).

    Google Scholar 

  11. A. Oberbeck, Crelle’s Journal 81, p. 62, 1876. — Oberbeck’s formula is mentioned in H. Lamb, Hydrodynamics, Art. 339, p. 604, and in C. W. Oseen, Hydrodynamik, p. 139, while more extensive expressions for various cases are given by Oseen at pp. 186–189.

    Google Scholar 

  12. R. Gans, Ann. d. Physik (IV) 86, p. 654, 1928.

    Google Scholar 

  13. A. Einstein, Ann. d. Physik (IV) 19, p. 289, 1906

    Article  ADS  MATH  Google Scholar 

  14. A. Einstein, Ann. d. Physik (IV) 34, p. 591, 1911.

    Article  ADS  MATH  Google Scholar 

  15. Compare p. 88 supra

    Google Scholar 

  16. M. Bancelin, Comptes Rendus Acad. d. Sciences Paris 152, p. 1582, 1911;

    Google Scholar 

  17. M. Bancelin Kolloid-Zeitschr. 9, p. 154, 1911.

    Article  Google Scholar 

  18. S. Odén, Nova Acta Reg. Soc. Scient. Upsal. (4) 3, No. 4, 1913.

    Google Scholar 

  19. See paper 4 of the series mentioned in footnote 2 supra. Compare also p. 184 below.

    Google Scholar 

  20. G. I. Taylor, Proc. Roy. Soc. London A 138, p. 41. 1932.

    ADS  Google Scholar 

  21. R. Elsenschitz, Physik. Zeitschr. 34, p. 411, 1933.

    Google Scholar 

  22. W. Haller, Kolloid-Zeitschr. 61, p. 30, 1932.

    Google Scholar 

  23. G. B. Jeffery, Proc. Roy. Soc. London A 102. p. 171, 1922–23.

    ADS  Google Scholar 

  24. R. Elsenschitz, Zeitschr. f. physik. Chemie A 158, p. 85, 1932 (see also Physik. Zeitschr. 33, p. 414, footnote, 1932).

    Google Scholar 

  25. See for instance: W. Haller, Kolloid-Zeitschr. 61, p. 30, 1932

    Google Scholar 

  26. P. Boeder, Zcitschr. f. Physik 75, p. 258, 1932; further E. Guth in the 5th paper mentioned in footnote 2, p. 113 supra.

    Article  ADS  Google Scholar 

  27. Compare W. Kuhn, Zeitschr. f. physik. Chemie A 161, p. 427, 1932. In footnote 3) to p. 434 of this paper Kuhn mentions that also Elsenschitz arrived at a similar result in the absence of any orientation effect.

    Google Scholar 

  28. P. Boeder, Zeitschr. f. Physik 75, p. 258, 1932.

    Article  ADS  Google Scholar 

  29. P. Boeder, Zeitschr. f. Physik 75 p. 263. 1932

    Article  ADS  Google Scholar 

  30. G. I. Taylor, Proc. Roy. Soc. London A 103, p. 58, 1923.

    ADS  Google Scholar 

  31. Exact values of the coefficient in eq. (15.23) for various values of (a—b)/a can be found in a table given by Jeffery, Proc. Roy. Soc. London A 102, p. 175, Table I, column headed: “minimum v”They also can be obtained from the data given in section 12 by calculating C22.

    Google Scholar 

  32. P. Boeder, Zeitschr. f. Physik 75, p. 268, 1932.

    Article  ADS  Google Scholar 

  33. Compare: R. Signer, Helv. Chim. Acta 17, p. 70, 1934;

    Google Scholar 

  34. Compare: R. Signer, Helv. Chim. Acta 18. p. 701, 1935.

    Article  Google Scholar 

  35. See: H. Staudinger, Die hochpolymeren organischen Verbindungen (Berlin 1932), which gives an extensive summary of the work up to that date. Further communications on highly polymerized compounds are continually forthcoming.

    Google Scholar 

  36. H. Staudinger, Die hochpolymeren organischen Verbindungen, pp. 56, 61.

    Google Scholar 

  37. K. H. Meyer and A. Van Der Wijk, Helv. Chim. Acta 18, p. 1067, 1935.

    Article  Google Scholar 

  38. Also: K. H. Meyer and A. Van Der Wijk Kolloid-Zeitschrift 76, p. 278, 1936.

    Article  Google Scholar 

  39. The following papers may be mentioned: (as a general summary until 1935): R. Signer, The molecular weights of polystyrenes and the shape of the molecules in solutions, Trans. Farad. Soc. 32, p. 296, 1936;

    Article  Google Scholar 

  40. The following papers may be mentioned: (special papers): R. Signer, Zeitschr. f. physik. Chemie A 150, p. 257, 1930;

    Google Scholar 

  41. R. Signer and H. Gross, Zeitschr. f. physik. Chemie A 165, p. 161, 1933;

    Google Scholar 

  42. R. Signer and H. Gross Helv. Chim. Acta 17, pp. 59, 335, 726, 1934;

    Article  Google Scholar 

  43. R. Signer, Zeitschr. f. physik. Chemie 18, p. 701, 1935;

    Google Scholar 

  44. R. Signer, Zeitschr. f. physik. Chemie 19, p. 897, 1936;

    Google Scholar 

  45. R. Signer and Ch. Sadron, Zeitschr. f. physik. Chemie 19, p. 1324, 1936.

    Google Scholar 

  46. H. Staudinger, Die hochpolymeren organischen Verbindungen, p. 135.

    Google Scholar 

  47. J. H. De Boer, Trans. Farad. Soc. 32, p. 30, 1936.

    Google Scholar 

  48. R. Signer, Trans. Farad. Soc., 32 p. 296. 1936

    Article  Google Scholar 

  49. See H. Staudinger and G. V. Schulz, Ber. deutsch. Chem. Gesellschaft 68, p. 2320, 1935,

    Article  Google Scholar 

  50. R. Signer, Helv. Chim. Acta 19, p. 897, 1936.

    Article  Google Scholar 

  51. R. Signer and H. Gross, Helv. Chim. Acta 17, p. 75 (Tabelle 6) 1934, where data are collected for the fraction with η sp /c s = 47 (compare the notation introduced in connection with eqs. (18.5) and (18.6) below), solved in the liquids mentioned; and further ibid., p. 336 (Tabelle 1), where data have been given for three different fractions (η sp /c s = 2,7; 5,6; 24 resp.), solved in CHCl3, v being 0,91 for all three cases.

    Google Scholar 

  52. Compare: R. Signer and H. Gross, Helv. Chim. Acta 17, pp. 59, 335, 726, 1934.

    Article  Google Scholar 

  53. See also a general exposition of the work with the ultracentrifuge by The Sved- Berg, Nature 139, p. 1051, 1937.

    Article  ADS  Google Scholar 

  54. H. Staudinger, Die hochpolymeren organischen Verbindungen pp. 166 seq.

    Google Scholar 

  55. See R. Signer, Trans. Farad. Soc. 32, p. 307 (last paragraph), 1936.

    Article  Google Scholar 

  56. H. Staudinger, Die hochpolymeren organischen Verbindungen p. 181. With regard to later views compare: H. Staudinger and G. V. Schulz, Ber. deutsch. Chem. Gesellschaft 68, p. 2320, 1935.

    Article  Google Scholar 

  57. R. Signer, Trans. Farad. Soc. 32, p. 304, 1936.

    Google Scholar 

  58. Compare H. Staudinger, Die hochpolymeren organischen Verbindungen pp. 65, 179. — It must be kept in mind of course that if the value of v for the lower molecular weights should be different from the value 0,92 adopted here, the results of the calculation would come out differently.

    Google Scholar 

  59. In consequence of the increase of d with molecular weight, there is no proportionality between L and M;roughly: L = 0,54 M2/3 (L in Å). As (with v =0,92) we have L d 2 = 2,90 M, this gives d = 2,3 MVg and thus d = 2,7 L 1/4 (L and d everywhere in Å). This would mean that the cross sectional area of the particle,.a d 2/4, is proportional to the square root of its length. In connection with the empirical relation L ~ M 2 / 3 we may perhaps point to a discussional remark made by H. Mark in reference to a paper by H. Staudinger, Zeitschr. f. Elektrochemie 40, p. 447, form. (3), 1934. See also Addendum II, p. 182 infra.

    Google Scholar 

  60. According to Helv. Chim. Acta 17, p. 62, 1934, the viscosity measurements for these fractions have been executed with suspensions in chloroform (η = 0,0057 Poise); estimating x= 3000, we obtain Dx= 1,0, which justifies the assumption t = 1/15 made in calculating L/d.

    Google Scholar 

  61. Compare R. Signer. Trans. Farad. Soc. 32, pp. 301–307. 1936.

    Google Scholar 

  62. R. Signer and H. Gross, Helv. Chim. Acta 17, p. 73, fig. 2, 1934.

    Google Scholar 

  63. M. S. Von Smoluchowski, Proc. Vth Intern. Congr. of Math. (Cambridge 1912), Vol. II, p. 197.

    Google Scholar 

  64. Compare H. Lamb, Hydrodynamics (Cambridge 1932), Artt. 327, 331, pp. 576 586. The coefficient β introduced by Lamb has been replaced by η/by in the text, in order to obtain a dimensionless coefficient which is proportional to the degree of slipping. — It must be remarked that eqs. (19. 4) and (19. 5) are to be considered as rough approximations only, as they have been obtained by taking a function f(ξ)consisting of a single term; a more correct calculation will show that the numbers —0,81, +0,19 in the denominators must be replaced by slightly different ones. When the calculation is performed, not for cylindrical particles, but for ellipsoids, then (δu/ δy) y=b must be replaced by a more complicated expression; it is found that in this case it becomes much more difficult to satisfy the condition, unless it is assumed that the coefficient γ is a function of the position of the surface element considered, and gradually decreases towards the ends of the particle.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burgers, J.M. (1995). On the Motion of Small Particles of Elongated Form. Suspended in a Viscous Liquid. In: Nieuwstadt, F.T.M., Steketee, J.A. (eds) Selected Papers of J. M. Burgers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0195-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0195-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4088-4

  • Online ISBN: 978-94-011-0195-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics