Skip to main content

Introductory Remarks on Recent Investigations Concerning the Structure of Liquids

  • Chapter
Selected Papers of J. M. Burgers
  • 453 Accesses

Abstract

The problems which arise when it is attempted to frame a theoretical explanation of the phenomena of viscosity are intimately connected with the entire problem of the internal structure of liquids. It does not lie upon our way to give a comprehensive picture of the present position of the latter problem; in connection, however, with various points to be considered in the subsequent chapters it may be useful to collect a few remarks of a more general nature in these introductory pages. The whole subject of the internal structure of liquids is in a state of intense development, and though many parts of it are yet awaiting an adequate treatment, great progress has been made in recent years, of which the reader may obtain an interesting view in the report of the general discussion on “Structure and Molecular Forces in (a) Pure Liquids and (b) Solutions”, held by the Faraday Society in 1936 1)). It is also this report upon which the following pages mainly have been inspired and from which several statements have been taken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See: Transactions of the Faraday Society 33, pp. 1–282, 1937.

    Google Scholar 

  2. See F. London, The general theory of molecular forces, Trans. Farad. Soc. 33, p. 8. 1937; here also further references have been given.

    Article  Google Scholar 

  3. This is illustrated by a diagram given by J. E. Lennard-Jones, Proc. Physic. Soc. London 43, p. 471, 1931.

    ADS  Google Scholar 

  4. See: J. C. Slater and J. G. Kirkwood, Physic. Review 37, p. 682, 1931.

    Article  ADS  Google Scholar 

  5. See J. E. Lennard-Jones, l.c. and F. London, l.c

    Google Scholar 

  6. The first formula is given by J. C. Slater, Physic. Review 32. p. 349. 1928;

    Article  ADS  Google Scholar 

  7. the second one has been obtained from data given by J. E. Lennard-Jones, l.c. p. 475.

    Google Scholar 

  8. By way of examples we mention: J. D. Bernal and R. H. Fowler, fourn. of Chem. Physics 1, p. 515, 1933 (on water: see below, p. 26);

    ADS  Google Scholar 

  9. J. H. De Boer, Trans. Farad. Soc. 32, p. 13, 1936 (on benzene);

    Google Scholar 

  10. A. Müller. Proc. Roy. Soc. London A 154, p. 624, 1936 (on solid paraffins).

    Article  ADS  Google Scholar 

  11. F. Zernike and J. A. Prins, Zeitschr. f. Physik 41, p. 184, 1927;

    Article  ADS  Google Scholar 

  12. J. A. Prins. Zeitschr. f. Physik 56, p. 617, 1929;

    Article  ADS  Google Scholar 

  13. J. A. Prins Die Naturwissenschaften 19, p. 435, 1931. — Compare below, p. 35.

    Article  ADS  Google Scholar 

  14. J. A. Prins and H. Petersen, Physica 3, p. 147, 1936.

    Article  ADS  Google Scholar 

  15. J. D. Bernal, An attempt at a molecular theory of liquid structure, Trans. Farad. Soc. 33, p. 27, 1937 (apparently there are some errors of print: in a few of the equations of this paper).

    Article  Google Scholar 

  16. Bernal in this paper does not give an explicit expression for the vibrational energy; it is assumed that for all liquids (except He, and possibly Ne and A) the thermal vibrations are fully excited.

    Google Scholar 

  17. L. Brillouin, On thermal agitation in liquids, Trans. Farad. Soc. 33, p. 54, 1937,

    Article  Google Scholar 

  18. L. Brillouin Journ. de Physique (VII) 7, p. 153, 1936. A remark pointing in the same direction is made by Bernal, 1.c. p. 36.

    MATH  Google Scholar 

  19. See: J. D. Bernal, 1.c.; J. Frenkel, On the liquid state and the theory of fusion, Trans. Farad. Soc. 33, p. 58, 1931;

    Article  Google Scholar 

  20. F. Simon, On the range of stability of the fluid state, Trans. Farad. Soc., 33 p. 65 1931 and other papers in the same volume.

    Article  Google Scholar 

  21. See also below, p. 30.

    Google Scholar 

  22. Compare: A. Smekal, Strukturempfindliche Eigenschaften der Kristalle, in: Handbuch der Physik, IInd Edition. Vol. XXIV/2 (Berlin 1933), pp. 861, 862.

    Google Scholar 

  23. L. Prandtl, Zeitschr. f. angevv. Math. u. Mech. 8, p, 85, 1928. Compare First Report, pp. 41–64.

    Article  MATH  Google Scholar 

  24. Compare: M. Born. Dynamik der Krystallgitter (Leipzig 1915), p. 34;

    Google Scholar 

  25. M. Born Probleme der Atomdynamik (Berlin 1926), p. 135;

    Book  MATH  Google Scholar 

  26. or also M. Born and M. Göppert- Mayer, Dynamische Gittertheorie der Kristalte, in. Handbuch der Physik, IInd Edition, Vol. XXIV/2 (Berlin 1933). p. 632.

    Google Scholar 

  27. J. D. Van Der Waals Jr., On the theory of viscosity, Proc. Acad. Amsterdam 21, p. 743, 1918/19 (= Verslagen 27, p. 744, 1918/19). Compare below, Chapter II, p. 39. The formula originally given had an extra factor 2, which according to a private communication by Prof. Van Der Waals should be omitted.

    Google Scholar 

  28. Andrade in his second paper, Philos. Magaz. (VII) 17, p. 705, 1934, takes the frequency to be proportional to (V M)1/6 x-1/2, where V M — molar volume and x = compressibility, but this assumption is dropped again afterwards, and the most important temperature effect is sought for in an exponential factor.

    Google Scholar 

  29. J. D. Van Der Waals Jr., On the theory of viscosity II. Proc. Acad. Amsterdam 21, p. 1283, 1918/19 (= Verslagen 27, p. 1350, 1918/19).

    Google Scholar 

  30. Compare various numbers of the “Communications from the Kamerlingh-Onnes Laboratory of the University of Leiden”, especially No’s 221d (= Proc. Acad. Amsterdam 35, p. 736, 1932) and 224d, 224e (= Proc. Acad. Amsterdam>.36, pp. 482, 612, 1933). A general discussion of the experimental results concerning the “λ-phenomena” has been given by W. H. Keesom in Comm. Leiden Suppl. No. 806 (June 1936), in which also all references up to this date are given.

    Google Scholar 

  31. W. H. Keesom, Comm. Leiden Suppl. No. 71e.

    Google Scholar 

  32. W. H. Keesom, Comm. Leiden Suppl. No. 61b.

    Google Scholar 

  33. See: F. Simon, Nature 133, p. 529, 1934:

    Article  ADS  Google Scholar 

  34. F. Simon Trans. Farad. Soc. 33 p. 66. 1937.

    Article  Google Scholar 

  35. E. F. Burton, Nature 135, p. 265, 1935.

    Article  ADS  Google Scholar 

  36. Compare below, Chapter II, fig. 14 and p. 74.

    Google Scholar 

  37. W. H. Keesom and Miss A. P. Keesom, Physica 3, p. 359. 1936.

    Article  ADS  Google Scholar 

  38. F. London, Proc. Roy. Soc. London A 153, p. 576, 1936. Reference also may be made to a discussion by

    Article  ADS  Google Scholar 

  39. A. Bljl, Physica 4, p. 329. 1937.

    Article  ADS  Google Scholar 

  40. One hesitates to write that condensed helium is a liquid. It might be considered as a solid in which gliding is extremely easy. Compare J. D. Bernal, Trans. Farad. Soc., 1.c., pp. 38, 42,

    Google Scholar 

  41. F. Slmon, Trans. Farad. Soc., 1.e., p. 43, 42.

    Google Scholar 

  42. Compare also F. Slmon, l.c. p. 66: “on cooling it down still nearer to the absolute 2ero one should expect no appreciable changes in its behaviour, such as passing into the vitreous state or becoming unstable compared with a crystalline form”.

    Google Scholar 

  43. See W. H. Keesom and K. Cluslus, Comm. Leiden No. 219f (= Proc. Acad. Amsterdam 35, p. 320, 1932)

    Google Scholar 

  44. W. H. Keesom and Miss A. P. Keesom, Comm. Leiden No. 224d (Proc. Acad. Amsterdam 36, p. 482, 1936).

    Google Scholar 

  45. M. Born, Zeitschr. f. Physik 58, p. 306, 1929.

    Article  ADS  Google Scholar 

  46. H. Kamerlingh Onnes and J. D. A. Boks, Comm. Leiden No. 170b, give as limiting value for the density at 0° K: 0,1452. W. H. Keesom and Miss A. P. Keesom, Comm. Leiden 224d (= Proc. Acad. Amsterdam 36, p. 482, 1933) state that their values are 0,3% below those found by Kamerlingh Onnes and Boks, and so we have taken the value: t,= 0,1448.

    Google Scholar 

  47. R. H. Fowler and J. D. Bernal. Trans. Farad. Soc. 29, p. 1499. 1933;

    Article  Google Scholar 

  48. J. D Bernal and R. H. Fowler, Journ, of Chem. Physics 1, p. 515. 1933.

    Article  ADS  Google Scholar 

  49. It must be remarked that a few cases have been described where the solvent is an organic liquid, and where the solution also has a viscosity smaller than that of the pure solvent. See Chapter II, p. 85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burgers, J.M. (1995). Introductory Remarks on Recent Investigations Concerning the Structure of Liquids. In: Nieuwstadt, F.T.M., Steketee, J.A. (eds) Selected Papers of J. M. Burgers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0195-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0195-0_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4088-4

  • Online ISBN: 978-94-011-0195-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics