Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 453))

Abstract

A condensed review of the main processes of clay diagenesis in sedimentary series is presented by using specific examples issuing from the literature. The Mexico Gulf Coast drill sites illustrate clay diagenesis with depth of burial, involving mainly the illite-to-smectite transition and becoming active when overburden exceeds 2 km thickness. The Galapagos spreading center documents the case of glauconite-like minerals developed from illite-smectite in hydrothermal, chemically-concentrated environment. North Sea wells allow to study the formation of kaolinite, illite and/or chlorite in sandstones submitted to fluid migrations. The significance of Atlantic Cretaceous to Paleogene series rich in Al-Fe smectite is discussed in terms of transformation of volcanic materials, early diagenesis of common mud, and detrital supply from dominantly pedologic exposed formations. A special attention is paid to the relationships between clay diagenesis and petroleum generation, and to the transition from the paleoenvironmental to the diagenetic expression of clay suites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, J.H., Peacor, D.R. (1986) Transmission and analytical electron microscopy of the smectite-to-illite transition’. Clays Clay Min., 34, 165–179.

    Article  Google Scholar 

  • Andrews, J.E. (1987) ‘Jurassic clay mineral assemblages and their post-depositional alteration : upper Great Estuarine group’, Scotland. Geol. Mag. (Tokyo), 124, 261–271.

    Article  Google Scholar 

  • Aronson, J.L.,,Hower, J. (1976) ‘Mechanism of burial metamorphism of argillaceous sediment, 2 : Radiogenic argon evidence’, Geol. Soc. Am. Bull, 87, 738–744.

    Article  Google Scholar 

  • Bjorlykke, K, Brensdal, A. ((1986) ‘Diagenesis of the Brent sandstone in the Statfjord field, ’ North Sea’, Soc. Econ. Mineral. Paleontol., Spec. Publ., 38, 157–167.

    Google Scholar 

  • Bonnot-Courtois, C. (1981) ‘Géochimie des terres rares dans les principaux milieux de formation et de sédimentation des argiles’, Thèse Sci. nat., Paris-Sud.

    Google Scholar 

  • Brindley, G.W., Brown, G. (1980) Crystal structures of clay minerals and their X-ray identification. Mineral Soc London.

    Google Scholar 

  • Buatier, M., Honnorez J., Ehret G. (1989) ‘Fe-smectite-glauconite transition in hydrothermal green clays from the Galapagos spreading center’, Clays Clay Min, 37, 532–541.

    Article  Google Scholar 

  • Chamley, H. (1989) Clay Sedimentology, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Chamley, H., Debrabant, P. (1984) ‘Paleoenvironmental history of the North Atlantic region from mineralogical and geochemical data’, Sediment. Geol., 40, 151–167.

    Article  Google Scholar 

  • Chamley, H., Debrabant, P., Flicoteaux R. (1988) ‘Comparative evolution of Senegal and eastern central Atlantic Basins, from mineralogical and geochemical investigations’, Sedimentology, 35, 85–103.

    Article  Google Scholar 

  • Clauer, N., O’Neil, J.R., Bonnot-Courtois, C., Holtzapffel, T. (1990) ‘Morphological, chemical, and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments’, Clays Clay Min., 38, 43–46.

    Article  Google Scholar 

  • Curtis, C.D., Ireland, B.J., Whiteman, J.A., Mulvaney, R., Whittle, C.K. (1984) ‘Authigenic chlorites : problems with chemical analysis and structural formula calculation’, Clay Min., 19, 471–481.

    Article  Google Scholar 

  • Debrabant, P., Delbart, S., Lemaguer, D. (1985) ‘Micoranalyses géochimiques de minéraux argileux de sédiments prélevés en Atlantique Nord (forages du DSDP)’, Clay Min., 20, 125–145.

    Article  Google Scholar 

  • Deconinck, J.F. (1987) ‘Identification de l’origine détritique ou diagénétique des assemblages argileux : le cas des alternances marne-calcaire du Crétacé inférieur subalpin’, Bull. Soc. géol. Fr., (8),3, 139–145.

    Google Scholar 

  • Deconinck, J.F., Debrabant, P. (1985) ‘Diagenèse des argiles dans le domaine subalpin : roles respectifs de la lithologie, de l’enfouissement et de la surcharge tectonique’, Rev. Géol. dyn. Géogr. phys., 26, 321–330.

    Google Scholar 

  • Guthrie, J.M., Houseknecht, D.W., Johns, W.D. (1986) ‘Relationships among vitrinite reflectance, illite crystallinity, and organic geochemistry in Carboniferous strata. Ouachita mountains, Oklahoma and Arkansas’, Am. Assoc. Petrol. Geol. Bull., 70, 26–33.

    Google Scholar 

  • Güven, N., Hower, W.F., Davies, D.K. (1980) ‘Nature of authigenic illites in sandstone reservoirs’, J. Sediment. Petrol., 50, 761–766.

    Google Scholar 

  • Hower, J., Eslinger, E.V., Hower, M.E., Perry, E.A. (1976) ‘Mechanisms of burial metamorphism of argillaceous sediment: 1. Mineralogical and chemical evidence’, Geol. Soc. Am. Bull., 87, 725–737.

    Article  Google Scholar 

  • Huggett, J.M. (1984) ‘Controls on mineral authigenesis in Coal Measures sandstones of the East Midlands, U.K.’, Clay Min., 19, 343–357.

    Article  Google Scholar 

  • Jeans, C.V., Merriman, R.J., Mithell, J.G., Bland, D.J. (1982) ‘ Volcanic clays in the Cretaceous of Southern England and Northern Ireland’, Clay Min., 17, 105–156.

    Article  Google Scholar 

  • Kisch, H.J. (1983) ‘Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks’, in G. Larsen, G.V. Chilingar (eds.), Diagenesis in sediments and sedimentary rocks, 2. Developments in sedimentology, Elsevier, Amsterdam.

    Google Scholar 

  • Levert, J., Ferry, S. (1988) ‘Diagenèse argileuse complexe dans le Mésozoïque subalpin révélée par cartographie des proportions relatives d’argiles selon des niveaux isochrones’, Bull. Soc. géol. Fr., (8), 4, 1029–1038.

    Google Scholar 

  • McHardy, W.J., Wilson, M.J., Tait, J.M. (1982) ‘Electron microscope and X-ray diffraction studies of filamentous illitic clay from sandstones of the Magnus Field’, Clay Min., 17, 23–29.

    Article  Google Scholar 

  • Morad, S., AlDahan, A.A. (1987a) ‘A SEM study of diagenetic kaolinization and illitization of detrital feldspars in sandstones’, Clay Min., 22, 237–243.

    Article  Google Scholar 

  • Morad, S., AlDahan, A.A. (1987b) ‘Diagenetic chloritization of feldspars in sandstones’, Sediment. Geol., 51, 155–164.

    Article  Google Scholar 

  • Nadeau, P.H., Tait, J.M., McHardy, W.J., Wilson, M.J. (1984) ‘Interstratified XRD characteristics of physical mixtures of elementary clay particles’, Clay Min., 19, 67–76.

    Article  Google Scholar 

  • Odin, G.S. (1988) Green marine clays. Developments in sedimentology, Elsevier, Amsterdam.

    Google Scholar 

  • Paquet, H. (1970) Evolution géochimique des minéraux argileux dans les altérations et les sols des climats méditerranéens et tropicaux à saisons contrastées, Mém. Serv. Carte géol. Als.-Lorr., 30, Strasbourg.

    Google Scholar 

  • Perry, E.A., Jr., Hower, J. (1972) ‘Late-stage dehydration in deeply buried pelitic sediments’, Am. Assoc. Petrol. Geol. Bull., 56, 2013–2021.

    Google Scholar 

  • Pollastro, R.M. (1985) ‘Mineralogical and morphological evidence for the formation of illite at the expense of illite/smectite’, Clays Clay Min., 33, 265–274.

    Article  Google Scholar 

  • Pollastro, R.M., Barker, C.E. (1986) ‘Application of clay-mineral, vitrinite reflectance, and fluid inclusion studies to the thermal and burial history of the Pinedale anticline, Green River basin, Wyoming’, in Roles of organic matter in sediment diagenesis, Soc Econ. Pal. Min Spec. Publ., 38, 73–83.

    Google Scholar 

  • Pye, K., Krinsley, D.H., Burton, J.H. (1986) ‘Diagenesis of U.S. Gulf coast shales’, Nature, 324, 557–559.

    Article  Google Scholar 

  • Ramseyer, K., Boles, J.R. (1986) ‘Mixed-layer illite/smectite minerals in Tertiary sandstones and shales, San Joaquin basin, California’, Clays Clay Min., 34, 115–124.

    Article  Google Scholar 

  • Reynolds, R.C., Jr, Hower, J. (1970) ‘The nature of interlayering in mixed-layer illite-montmorillonites’, Clays Clay Min., 18, 25–36.

    Article  Google Scholar 

  • Robert, C. (1987) ‘Clay mineral associations and structural evolution of the South Atlantic : Jurassic to Eocene’, Palaeogeogr., Climatol., Ecol., 50, 87–108.

    Article  Google Scholar 

  • Singer, A., Müller, G. (1983) ‘Diagenesis in recent sediments’, in G. Larsen, G.V. Chilingar (eds.), Diagenesis in sediments and sedimentary rocks, Developments in sedimentology, Elsevier, Amsterdam.

    Google Scholar 

  • Stonecipher, S.A. (1976) ‘Origin, distribution and diagenesis of phillipsite and clinoptilolite in deep-sea sediments’, Chem. Geol., 17, 307–318.

    Article  Google Scholar 

  • Surdam, R.C., Crossey, L.J. (1987) ‘Integrated diagenetic modeling : A process-oriented approach for clastic systems’, Annu. Rev. Earth Planet. Sci., 15, 141–170.

    Article  Google Scholar 

  • Thomas, M. (1986) ‘Diagenetic sequences and K/Ar dating in Jurassic sandstones, Central Viking graben : effects on reservoir properties’, Clay Min., 21, 695–710.

    Article  Google Scholar 

  • Velde, B. (1985) Clay minerals. A physical-chemical explanation of their occurrence, Elsevier, Amsterdam.

    Google Scholar 

  • Weaver, C.E. (1989) ‘Clays, muds, and shales’, Developments in Sedimentology, 44, Elsevier, Amsterdam.

    Google Scholar 

  • Weaver, C.E. and associates (1984) Shale-slate metamorphism in Southern Appalachians, Elsevier, Amsterdam.

    Google Scholar 

  • Wilson, M.D., Pittman, E.D. (1977) ‘Authigenic clays in sandstones : recognition and influence on reservoir properties and paleoenvironmental analysis’, J. Sedimentol. Petrol., 47, 3–31.

    Google Scholar 

  • Wilson, M.J., Bain, D.C., McHardy, W.J., Berrow, M.L. (1972) ‘Clay mineral studies on some Carboniferous sediments in Sotland’, Sediment. Geol., 8, 137–150.

    Article  Google Scholar 

  • Yau, U.C., Peacor, D.R., McDowell, S.D. (1987) ‘Smectite-to-illite reactions in Salton Sea shales : a transmission and analytical electron microscopy study’, J. Sediment. Petrol., 57, 335–342.

    Google Scholar 

  • Yeh, H.W., Savin, S.M. (1977) ‘Mechanism of burial metamorphism of argillaceous sediments : I.O-isotope evidence’, Geol. Soc. Am. Bull., 88, 1321–1330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chamley, H. (1994). Clay Mineral Diagenesis. In: Parker, A., Sellwood, B.W. (eds) Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology. NATO ASI Series, vol 453. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0189-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0189-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4085-3

  • Online ISBN: 978-94-011-0189-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics