Advertisement

Thermodynamic Limit

  • D. Ya. Petrina
Chapter
  • 334 Downloads
Part of the Mathematical Physics Studies book series (MPST, volume 17)

Abstract

In the previous section, we have constructed the representation of statistical operators as Wiener integrals (in the grand canonical ensemble), namely,
$$F_s^ \wedge \left( {{{(x)}_s};{{(y)}_s}} \right) = {\Xi ^{ - 1}}(V,\beta ,z)\sum\limits_{n = 0}^\infty {\frac{{{z^{n + s}}}}{{n!}}} \times \int {d{{(u)}_n}P_{{{(x)}_s},{{(u)}_n};{{(y)}_s},{{(u)}_n}}^\beta } (d{(\omega )_{s + n}}){\alpha _ \wedge }(d{(\omega )_{s + n}}){e^{ - U({{(\omega )}_{s + n}})}}.$$
(7.1)

Keywords

Thermodynamic Limit Grand Canonical Ensemble Quantum Statistical Mechanic Wiener Measure Reduce Density Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Angelescu, N. and Nenciu, G. On the independence of the thermodynamic limit on the boundary conditions in quantum statistical mechanics ,Comm. Math. Phys., 29,15–30 (1973).MathSciNetADSCrossRefGoogle Scholar
  2. [1]
    Brydges, D. C. and Federbush, P. The Cluster Expansion in Statistical Mechanics ,Comm. Math. Phys., 49, 233– 246 (1976).MathSciNetADSCrossRefGoogle Scholar
  3. [2]
    Brydges, D. C. and Federbush, P. The Cluster Expansion for Potentials with Exponential Fall-Off ,Comm. Math. Phys., 53, 19–30(1977).MathSciNetADSCrossRefGoogle Scholar
  4. [1]
    Feynman, R. Statistical Mechanics [Russian translation], Mir, Moscow (1975).Google Scholar
  5. [1]
    Fröhlich, J. and Park, Y. M. Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems ,Comm. Math. Phys., 59, 235–266 (1978).MathSciNetADSCrossRefGoogle Scholar
  6. [2]
    Fröhlich, J. and Park, Y. M. Correlation inequalities and the thermodynamic limit for classical and quantum continuous systems. II. Bose -Einstein and Fermi-Dirac statistics ,J. Stat. Phys., 23, 701–753 (1980).ADSCrossRefGoogle Scholar
  7. [1]
    Gielerak, R. and Zagrebnov, V. A. Analyticity and Independence of the Infinite Volume Thermal KMS States for a Class of Continuous Systems. I. The Maxwell -Boltzmann Statistics; II. The Quantum Statistical Case, Preprint, Catholic University of Leuven, Leuven (1992).Google Scholar
  8. [1]
    Ginibre, J. Reduced density matrices of quantum gases. I. Limit of infinite volume ,J. Math. Phys., 6, No. 2, 238–251 (1965).MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. [2]
    Ginibre, J. Reduced density matrices of quantum gases. II. Cluster property ,J. Math. Phys., 6, No. 2,252–262 (1965).MathSciNetADSCrossRefGoogle Scholar
  10. [3]
    Ginibre, J. Reduced density matrices of quantum gases. III. Hard-core potentials ,J. Math. Phys., 6, No. 9, 1432–1446 (1965).MathSciNetADSCrossRefGoogle Scholar
  11. [4]
    Ginibre, J. Some applications of functional integrations in statistical mechanics ,in: C. de Witt and R. Stora (eds), Statistical Mechanics and Quantum Field Theory, Gordon and Breach, New York (1971).Google Scholar
  12. [1]
    Matveichuk, K. S. The method of reduced density matrices for describing the states of quantum systems in the canonical ensemble ,Teor. Mat. Fiz., 27, No. 3, 360 -372 (1976).Novikov, I. D.Google Scholar
  13. [1]
    Matveichuk, K. S. On the independence of free energy on boundary conditions ,Funk. Anal Prilozh., 1,72–83 (1969).Google Scholar
  14. Gibbs states in quantum statistical physics ,Funk. Anal Prilozh., 4, 79–80 (1970).Google Scholar
  15. [1]
    Park, Y. M. Bounds on exponentials of local number operators in quantum statistical mechanics ,Comm. Math. Phys., 94, 1–33 (1984);ADSzbMATHCrossRefGoogle Scholar
  16. [1A]
    J. Stat. Phys.,40, 259–302 (1984).ADSCrossRefGoogle Scholar
  17. [1]
    Robinson, D. The thermodynamic pressure in quantum statistical mechanics. Lecture Notes in Physics, 9, Springer, Berlin-Heidelberg-New York (1971).Google Scholar
  18. [1]
    Ruelle, D. Statistical Mechanics. Rigorous Results, Benjamin, New York-Amsterdam (1970).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • D. Ya. Petrina
    • 1
  1. 1.Institute of MathematicsUkrainian Academy of SciencesKievUkraine

Personalised recommendations