Skip to main content

Syringolide Elicitors Specified by Avirulence Gene D Alleles in Pseudomonas Syringae

  • Chapter
Advances in Molecular Genetics of Plant-Microbe Interactions

Abstract

The deduced protein sequences of microbial avirulence genes have not illuminated their functions in the pathogens that harbor them. Indeed, the only well characterized avirulence genes with defined functions are the coat protein genes of viral pathogens [1,2]. In the case of these genes, the coat protein itself appears to function as an elicitor recognized by resistant plant cells. Certain cloned fungal avirulence genes also direct production by the pathogen of specific elicitors [3, 4,5]. In bacterial pathogens, only one avirulence gene, avrD,has thus far been shown to direct elicitor production [6]. These elicitors initiate active hypersensitive defense reactions (HR) only in plants carrying the complementary disease resistance genes. It has long been proposed that plant disease resistance genes encode specific receptors, probably located on the plant plasma membrane [7,8] and recent work on the cloning of disease resistance genes supports this idea [9, B. Staskawicz, personal communication]. Such receptors are thought to perceive elicitors and generate intracellular signal cascades that eventually derepress expression of defense response genes. These gene products, in turn, actually restrict pathogen development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Culver JN, Dawson WO. Tobacco mosaic virus elicitor coat protein genes produce a hypersensitive phenotype in transgenic Nicotiana svlvestrisplants. Molec Plant -Microbe Inter 1991;4:458–463.

    Article  CAS  Google Scholar 

  2. Kohm BA, Goulden MG, Gilbert JE, Kavanagh TA, Baulcombe DC. A potato virus X resistance gene mediates an induced, nonspecific resistance in protoplasts. Plant Cell 1993;5:913–920.

    PubMed  CAS  Google Scholar 

  3. deWit PJGM. Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 1992;30:391–418.

    Article  CAS  Google Scholar 

  4. Kamoun S, Klucher KM, Coffey MD, Tyler BM. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Molec Plant-Microbe Inter 1993;6:573–581.

    Article  CAS  Google Scholar 

  5. Hahn M, Jungling S, Knogge W. Cultivar-specific elicitation of barley defense reactions by the phytotoxic peptide NIP1 from Rhynchosporium secalis. Molec Plant -Microbe Inter 1993;6:745–754.

    Article  CAS  Google Scholar 

  6. Keen NT., Tamaki S, Kobayashi D et al. Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Molec Plant-Microbe Inter 1990:3:112–121.

    Article  CAS  Google Scholar 

  7. Keen NT. Specific recognition in gene-for-gene host-parasite systems. Adv Plant Pathol 1982;1:35–82.

    Google Scholar 

  8. Yoshikawa M, Yamaoka N, Takeuchi Y. Elicitors: their significance and primary modes of action in the induction of plant defense reactions. Plant Cell Physiol 1993;34:1163–1173.

    CAS  Google Scholar 

  9. Martin G, Brommonschenkel SH, Chunwongse J et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 1993;262:1432–1436.

    Article  PubMed  CAS  Google Scholar 

  10. Staskawicz BJ, Dahlbeck D, Keen NT. Cloned avirulence gene of Pseudomonas syringaepv. glycinea determines race-specific incompatibility on Glycine max (L.) Merr. Proc Nat Acad Sci USA 1984;81:6024–6028.

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi DY, Keen NT. Cloning of a factor from Pseudomonas syringae pv. tomato responsible for a hypersensitive response on soybean. Phytopathology 1985;75:1355.

    Google Scholar 

  12. Kobayashi DY, Tamaki S, Keen NT. Cloned avirulence genes from the tomato pathogen Pseudomonas syringae pv. tomato confer cultivar specificity on soybean. Proc Natl Acad Sci, USA 1989;86:157–161.

    Article  CAS  Google Scholar 

  13. Kobayashi D, Tamaki S, Keen NT. Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Molec Plant-Microbe Inter 1990a;3:94–102.

    Article  CAS  Google Scholar 

  14. Roche P, Debelle F, Maillet F, Lerouge P, Faucher C, Denarie J. Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodPO and nodH genes encode the sulfation of lipo-oligosaccharide signals. Cell 1991;67:1131–1143.

    Article  PubMed  CAS  Google Scholar 

  15. Shen H, Keen NT. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J Bacteriol 1993;175:5916–5924.

    PubMed  CAS  Google Scholar 

  16. Murillo J, Shen H, Gerhold D, Sharma A, Cooksey DA, Keen NT. Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23. Plasmid 1994;31:275–287.

    Article  PubMed  CAS  Google Scholar 

  17. Yucel I, Boyd C, Debnam Q, Keen NT Two different classes of avrD alleles occur in pathovars of Pseudomonas syringae Molec Plant-Microbe Inter 1994;7:131–139.

    Article  CAS  Google Scholar 

  18. Murillo J, Keen, NT. Two native plasmids of Pseudomonas syringae pv. tomato strain PT23 share a large amount of repeated DNA, including replication sequences. Molec Microbiol 1994; (in press).

    Google Scholar 

  19. Fellay R, Rahme LG, Mindrinos MN, Frederick RD, Pisi A, Panopoulos NJ. Genes and signals controlling the Pseudomonas syringae pv. phaseolicola-plant interaction. Adv Molec Gen Plant-Microbe Inter 1991;1:45–52.

    Google Scholar 

  20. Innes RW, Bent AF, Kunkel BN, Bisgrove SR, Staskawicz BJ. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J Bacteriol 1993;175:4859–4869.

    PubMed  CAS  Google Scholar 

  21. Xiao Y, Hutcheson SW. A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathgenicity and host range determinants in Pseudomonas syringae. J Bacteriol 1994;176:3089–3091.

    PubMed  CAS  Google Scholar 

  22. Kobayashi D, Tamaki S, Trollinger DJ, Gold S, Keen NT. A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P.s. pv. tomato but devoid of the avirulence phenotype. Molec Plant-Microbe Inter 1990;3:103–111.

    Article  CAS  Google Scholar 

  23. Yucel I, Keen NT. Amino acid residues required for the activity of avrD alleles. Molec Plant-Microbe Inter 1994;7:140–147.

    Article  CAS  Google Scholar 

  24. Keen NT, Buzzell RI. New disease resistance genes in soybean against Pseudomonas syringae pv. glycinea: evidence that one of them interacts with a bacterial elicitor. Theor Appl Genet 1991;81:133–138.

    Article  CAS  Google Scholar 

  25. Midland SL, Keen NT, Sims JJ et al. The structures of syringolides 1 and 2, novel C-glycosidic elicitors from Pseudomonas syringae pv. tomato. J Org Chem 1993;58:2940–2945.

    Article  CAS  Google Scholar 

  26. Smith MJ, Mazzola, EP, Sims JJ et al. The syringolides: bacterial C-glycosyl lipids that trigger plant disease resistance. Tetrahed Lett 1993;34:223–226.

    Article  CAS  Google Scholar 

  27. Yucel I, Midland SL, Sims JJ, Keen NT. Class I and class II avrD alleles direct the production of different products in Gram-negative baceria. Molec Plant-Microbe Inter 1994;7:148–150.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Keen, N. et al. (1994). Syringolide Elicitors Specified by Avirulence Gene D Alleles in Pseudomonas Syringae . In: Daniels, M.J., Downie, J.A., Osbourn, A.E. (eds) Advances in Molecular Genetics of Plant-Microbe Interactions. Current Plant Science and Biotechnology in Agriculture, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0177-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0177-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4079-2

  • Online ISBN: 978-94-011-0177-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics