Skip to main content

Plant and Pathogen Loci Determining Recognition and Cell Death in Arabidopsis Thaliana.

  • Chapter
Advances in Molecular Genetics of Plant-Microbe Interactions

Abstract

Many interactions between plants and their parasites begin with specific recognition. The nature of this recognition, and of subsequent signal transduction by both host and parasite have profound impact on the outcome of the interaction. Plants have evolved effective mechanisms to recognize pathogenic microbes and halt their biotrophic or necrotrophic growth. Active plant defense mechanisms obviously force adaptive selection for microbe variants which can evade the plant’s recognition capabilities. This evolutionary tug of war has led to a complex set of both plant and microbe genes whose interaction is required for a successful resistance reaction. As well as a potentially large array of recognition functions, a number of subsequent functions must exist which are necessary to establish a completely effective resistant phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Debener T, Lehnackers H, Arnold M, Dangl JL. Identification and molecular mapping of a single Arabidopsis thaliana locus determining resistance to a phytopathogenic Pseudomonas syringae isolate. Plant J. 1991;1:289–302.

    Article  PubMed  CAS  Google Scholar 

  2. Dangl JL, Ritter C, Gibbon MJ, et al. Functional homologs of the Arabidopsis RPM1 disease resistance gene in bean and pea. Plant Cell 1992;4:1359–1369.

    PubMed  CAS  Google Scholar 

  3. Bisgrove SR, Simonich MT, Smith NM, Sattler NM, Innes RI. A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 1994;6:in press.

    Google Scholar 

  4. Dietrich RA, Delaney TP, Uknes SJ, Ward EJ, Ryals JA, Dangl JL. Arabidopsis mutants simulating disease resistance response. Cell 1994;77:565–578.

    Article  PubMed  CAS  Google Scholar 

  5. Dangl JL. The emergence of Arabidopsis thaliana as a model for plant-pathogen interactions. Adv. Plant Pathology 1993;10:127–155.

    Google Scholar 

  6. Feldmann KA. T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J. 1991;1:71–82.

    Article  CAS  Google Scholar 

  7. Feldmann KA. T-DNA insertion mutagenesis in Arabidopsis: Seed transformation method. In: Koncz C, Chua N-H, Schell J, ed. Methods in Arabidopsis Research. Singapore: World Scientific, 1992: 274–289.

    Google Scholar 

  8. Walbot V, Hoisington DA, Neuffer MG. Disease lesion mimics in maize. In: Kosuge T, Meredith C, ed. Genetic Engineering of Plants. New York: Plenum Publishing Co., 1983: 431–442. (Hollander A, ed. vol 3).

    Google Scholar 

  9. Johal GS, Hulbert SH, Briggs SP. Disease lesion mimics of maize: A model for cell death in plants. Bioessays 1994; in press.

    Google Scholar 

  10. Greenberg JT, Ausubel FM. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 1993;4:327–342.

    Article  PubMed  CAS  Google Scholar 

  11. Greenberg JT, Guo A, Klessig DF, Ausubel FM. Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell 1994;77:551–564.

    Article  PubMed  CAS  Google Scholar 

  12. Koch E, Slusarenko AJ. Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 1990;2:437–445.

    PubMed  CAS  Google Scholar 

  13. Koch E, Slusarenko AJ. Fungal pathogens of Arabidopsis thaliana (L.) Heynh. Bot. HeIv. 1990;100:257–269.

    Google Scholar 

  14. Holub EB, Beynon JL, Crute IR. Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol- Plant-Microbe Interact. 1994;7:223–239.

    Article  CAS  Google Scholar 

  15. Liang P, Pardee A. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992;257:967–971.

    Article  PubMed  CAS  Google Scholar 

  16. Liang P, Averbough L, Pardee AB. Distribution and cloning of eukaryotic mRNAs by means of differential display: refinements and optimizaton. Nucl. Acids Res. 1993;21:32693275.

    Article  CAS  Google Scholar 

  17. Bauer B, Müller H, Reich J, et al. Identification of differentially expressed mRNA species by an improved display technique (DDRT-PCR). Nucl. Acids Res. 1993;21:4272–4280.

    Article  CAS  Google Scholar 

  18. Metan M, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 1993;101:441–450.

    Article  Google Scholar 

  19. Manoil C, Beckwith J. TnphoA: A transposon probe for protein export signals. Proc. Natl. Acad. Sci., USA 1985;82:8129–8133.

    Article  CAS  Google Scholar 

  20. Innes RW, Bent AF, Kunkel BN, Bisgrove SR, Staskawicz BJ. Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J. Bacteriol. 1993;175:4859–4869.

    PubMed  CAS  Google Scholar 

  21. Shen H, Keen NT. Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J. Bacteriol. 1993;175:5916–5924.

    PubMed  CAS  Google Scholar 

  22. Niepold F, Anderson D, Mills D. Cloning determinants of pathogenicity from Pseudomonas syringae pathovar syringae. Proc. Natl. Acad. Sci., USA 1985;82:406–410.

    Article  PubMed  CAS  Google Scholar 

  23. Mukhopadhyay M, Williams J, Mills D. Molecular analysis of a pathogenicity locus in Pseudomonas syringae pv. syringae. J. Bacteriol. 1988;170:5479–5488.

    PubMed  CAS  Google Scholar 

  24. Loubens L, Debarbieux L, Bohin A, Lacroix J-M, Bohin J-P. Homology between a genetic locus (mdoA) involved in the osmoregulated biosynthesis of periplasmic glucans in Escherichia colt and a genetic locus (hrpM) controlling pathogenicity in Pseudomonas syringae. Mol. Microbiol. 1993;10:329–340.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dangl, J. et al. (1994). Plant and Pathogen Loci Determining Recognition and Cell Death in Arabidopsis Thaliana.. In: Daniels, M.J., Downie, J.A., Osbourn, A.E. (eds) Advances in Molecular Genetics of Plant-Microbe Interactions. Current Plant Science and Biotechnology in Agriculture, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0177-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0177-6_42

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4079-2

  • Online ISBN: 978-94-011-0177-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics