Skip to main content

Effects of Nod Factors on Plants

  • Chapter

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 21))

Abstract

Host-specific symbiotic interactions between rhizobia and leguminous plants result in nitrogen-fixing root nodule formation. This is achieved by a complex series of developmental changes in both partners involving spatially and temporally regulated expression of specific genes. The bacterial genes involved in nodulation (nod genes) code for the synthesis and excretion of specific signals, the Nod factors, that induce nodule organogenesis [1-4]. The core Nod factor structure consists of a tetra-or pentameric chitooligosaccharide that is N-acylated on the terminal non-reducing residue. The Nod factors, identified up to now from seven Rhizobium species, differ by substituents of the terminal sugar residues conferring the specific interaction with host plants. For example, the sulfate substitution on the reducing sugar residue of the R. meliloti Nod signals is indispensable for nodule induction on Medicago, while in the absence of the sulfate group R. meliloti gains the ability to trigger nodule formation on the non-host plant Vicia. The Nod factors act at pico-and nanomolar concentrations and all structural features of the molecules seem to contribute to their biological activity. The Nod signals induce various plant responses that result in root hair deformation, formation of preinfection threads, cortical cell division initiating the nodule primordium or nodule formation on certain host plants such as Medicago. The fact, that Medicago nodules can form spontaneously in the absence of bacteria, indicates that all steps of the nodule developmental pathway are controlled by the plant, uncoupled of bacterium infection, and are only triggered by the Nod factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, Promé JC, Dénarié J. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 1990;344:781–784.

    Article  PubMed  CAS  Google Scholar 

  2. Truchet G, Roche P, Lerouge P, Vasse J, Camut S, De Billy F, Promé JC, Dénarié J. Sulphated lipo-oligosaccharide signals of Rhizobium meliloti elicit root nodule organogenesis in alfalfa. Nature 1991;351:670–673.

    Article  CAS  Google Scholar 

  3. Spaink HP, Sheeley DM, Van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ. A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 1991;354:125–130.

    Article  PubMed  CAS  Google Scholar 

  4. Schultze M, Quiclet-Sire B, Kondorosi E, Virelizier H, Glushka JN, Endre G, Géro SD, Kondorosi A. Rhizobium meliloti produces a family of sulfated lipooligosacharides exhibiting different degrees of plant host specificity. Proc Natl Acad Sci USA 1992;89:192–196.

    Article  PubMed  CAS  Google Scholar 

  5. Savouré A, Magyar Z, Pierre M, Brown S, Schultze M, Dudits D, Kondorosi A, Kondorosi E. Activation of the cell cycle machinery and the isoflavonoid biosynthesis pathway by active Rhizobium meliloti Nod signal molecules in Medicago microcallus suspensions. EMBO J 1994;13:1093–1102.

    PubMed  Google Scholar 

  6. Scheres B, Van de Wiel C, Zalensky A, Horvath B, Spaink H, Van Eck H, Zwartkruis F, Wolters AM, Gloudemans T, Van Kammen A, Bisseling T. The ENOD12 gene product is involved in the infection process during the pea-Rhizobium interaction. Cell 1990;60:281–294.

    Article  PubMed  CAS  Google Scholar 

  7. Govers F, Harmsen H, Heidstra R, Michielsen P, Prins M, Van Kammen A, Bisseling T. Characterization of the pea ENOD12B gene and expression analyses of the two ENOD12 genes in nodule, stem and flower tissue. Mol Gen Genet 1991;228:160–166.

    Article  PubMed  CAS  Google Scholar 

  8. Pichon M, Journet EP, Dedieu A, De Billy F, Truchet G, Barker DG. Rhizobium meliloti elicits transient expression of the early nodulin gene ENOD12 in the differentiating root epidermis of transgenic alfalfa. Plant Cell 1992;4:1199–1211.

    PubMed  CAS  Google Scholar 

  9. Allison LA, Kiss GB, Bauer P, Poiret M, Pierre M, Savouré A, Kondorosi E, Kondorosi A. Identification of two alfalfa early nodulin genes with homology to members of the pea Enodl2 gene family. Plant Mol Biol 1993;21:375–380.

    Article  PubMed  CAS  Google Scholar 

  10. Csanádi G, Szécsi J, Ka16 P, Kiss P, Endre G, Kondorosi A, Kondorosi E, Kiss GB. Enodl2, an early nodulin gene, is not required for nodule formation and efficient nitrogen fixation in alfalfa. Plant Cell 1994;6:201–213.

    PubMed  Google Scholar 

  11. Horvath B, Heidstra R, Lados M, Moerman M, Spaink HP, Promé JC, Van Kammen A, Bisseling T. Lipo-oligosaccharides of Rhizobium induce infection-related early nodulin gene expression in pea root hairs. Plant J 1993;4:727–733.

    Article  PubMed  CAS  Google Scholar 

  12. Pichon M, Journet EP, Dedieu A, De Billy F, Huguet T, Truchet G, Barker DG. Expression of the Medicago truncatula Enodl2 gene in response to R. meliloti Nod factors and during spontaneous nodulation in transgenic alfalfa. In: Palacios R, Mora J, Newton WE, eds. New Horizons in Nitrogen Fixation. Dordrecht: Kluwer, 1993: 285–290.

    Google Scholar 

  13. Bauer P, Crespi M, Szécsi J, Allison LA, Schultze M, Ratet P, Kondorosi E, Kondorosi A. Alfalfa Enodl2 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion. Plant Physiol 1994; in press.

    Google Scholar 

  14. Yang WC, Katinakis P, Hendriks P, Smolders A, De Vries F, Spee J, Van Kammen A, Bisseling T, Franssen H. Characterization of GmENOD40, a gene showing novel patterns of cell-specific expression during soybean nodule development. Plant J 1993;3:573–585.

    CAS  Google Scholar 

  15. Kouchi H, Hata S. Isolation and characterization of novel nodulin cDNAs representing genes expressed at early stages of soybean nodule development. Mol Gen Genet 1993;238:106–119.

    PubMed  CAS  Google Scholar 

  16. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science 1989;244:48–52.

    Article  PubMed  CAS  Google Scholar 

  17. Rastinejad F, Conboy MJ, Rando TA, Blau HM. Tumor suppression by RNA from the 3’ untranslated region of a-tropomyosin. Cell 1993;75:1107–1117.

    Article  PubMed  CAS  Google Scholar 

  18. Verma DPS. Signals in root nodule organogenesis and endocytosis of Rhizobium. Plant Cell 1992;4:373–382.

    PubMed  CAS  Google Scholar 

  19. Hirt H, Páy A, Györgyey J, Bak6 L, Németh K, Bögre L, Schweyen RJ, HeberleBors E, Dudits D. Complementation of a yeast cell cycle mutant by an alfalfa cDNA encoding a protein kinase homologous to p34cdc2. Proc Natl Acad Sci USA 1991;88:1636–1640.

    Article  PubMed  CAS  Google Scholar 

  20. Wu SC, Bögre L, Vincze É, Kiss GB, Dudits D. Isolation of an alfalfa histone H3 gene: structure and expression. Plant Mol Biol 1988;11:641–649.

    Article  CAS  Google Scholar 

  21. Kapros T, Bögre L, Nemeth K, Bakó L, Györgyey J, Wu SC, Dudits D. Differential expression of histone H3 gene variants during cell cycle and somatic embryogenesis in alfalfa. Plant Physiol 1992;98:621–625.

    Article  PubMed  CAS  Google Scholar 

  22. Hirt H, Mink M, Pfosser M, Bögre L, Györgyey J, Jonak C, Gartner A, Dudits D, Heberle-Bors E. Alfalfa cyclins: differential expression during the cell cycle and in plant organs. Plant Cell 1992;4:1531–1538.

    PubMed  CAS  Google Scholar 

  23. Yamada A, Shibuya N, Kodama O, Akatsuka T. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetyl-chitooligosaccharides. Biosci Biotechnol Biochem 1993;57:405–409.

    Article  CAS  Google Scholar 

  24. Staehelin C, Schultze M, Kondorosi E, Mellor RB, Boller T, Kondorosi A. Structural modifications in Rhizobium meliloti Nod factors influence their stability against hydrolysis by root chitinases. Plant J 1994;5:319–330.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kondorosi, E. et al. (1994). Effects of Nod Factors on Plants. In: Daniels, M.J., Downie, J.A., Osbourn, A.E. (eds) Advances in Molecular Genetics of Plant-Microbe Interactions. Current Plant Science and Biotechnology in Agriculture, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0177-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0177-6_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4079-2

  • Online ISBN: 978-94-011-0177-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics