Skip to main content

Wide Band Gap Electronic Devices

  • Chapter
  • 357 Accesses

Part of the book series: NATO ASI Series ((ASHT,volume 1))

Abstract

This paper summaries the recent experimental results on silicon carbide and gallium nitride electronic devices. These semiconductors are far ahead in terms of device fabrication than other wide band gap materials because of progress in epitaxial growth, doping, p-n junction fabrication and contact development. Optoelectronic devices, as well as high-temperature, high-power and microwave devices are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, R.F., Keiner, G., Shur, M., Palmour, J.W., and Edmond, J.A. (1991) Thin film deposition and microelectronic and optoelectronic device fabrication and characterization in monocrystalline alpha and beta silicon carbide, Proceedings of the IEEE, 79, 677–701.

    Article  CAS  Google Scholar 

  2. Ivanov, P.A. and Chelnokov, V.E. (1992) Recent development in SiC single-crystal electronics, Semicond. Sci. Technol. 7, 863–880.

    Article  CAS  Google Scholar 

  3. Spencer, M.G., Devaty, R. P., Edmond, J.A., Khan, M.A., and Rahman, M. (eds) (1994) Institute of Physics Conference Series Number 137, Proceedings of the Fifth Conference on Silicon Carbide and Related Materials, Institute of Physics Publishing, Bristol.

    Google Scholar 

  4. Palmour, J.W., Edmond, J.A., Kong, H.S., and Carter, C.H.Jr. (1992) Applications for 6H-Silicon Carbide Devices, in C.Y. Yang, M.M. Rachman and G.L. Harris (eds), Amorphous and Crystalline Silicon Carbide IV, Springer, Berlin, pp. 289–296.

    Chapter  Google Scholar 

  5. Dmitriev, V.A., Kogan, L.M., Morozenko, Ya.V, Chelnokov, V.E. and Cherenkov, A.E. (1990) Light-emitting diode with λmax = 398 nm. Sov.Phys.Tech.Lett., 16, 828.

    Google Scholar 

  6. Dmitriev, V.A., Ivanov, P.A., Levin ,V.I., Popov, I.V., Strelchuk, A.M., Tairov, Yu.M., Tsvetkov, V.F., and Chelnokov, V.E. (1987) Fabrication of epitaxial SiC p-n structures on substrates obtained from bulk SiC crystals, Sov. Tech. Phys. Lett.13, 489–490.

    Google Scholar 

  7. Vodakov, Yu.A., Girka, A.I., Konstantinov, A.O., Mokhov, E.N., Roenkov, A.D., Svirida, S.V., Semenov, V.V., Sokolov, V.I., and Shishkin, A.V. (1992) The light emitting diodes on the basis of fast electron irradiated silicon carbide, in Ref. [4], pp. 374–380.

    Google Scholar 

  8. Barash, A.S., Vodakov, Yu.A., Koltsova, E.N., Maltsev, A.A., Mokhov, E.N., and Roenkov, A.D. (1988) Light emitting diodes for green spectrum region based on heteroepitaxial layers of silicon carbide 4H polytype, Pisma v Jurnal Techn. Fiziki 14, 2222–2225.

    CAS  Google Scholar 

  9. Edmond, J., Kong, H., Dmitriev, V., Bulman, G. and Carter, C.Jr., (1994) Blue/UV emitters from SiC and its alloys, in Ref. [3], pp. 515–518.

    Google Scholar 

  10. Nakamura, S., Mukai, T., and Senoh, M. (1992) High-Power GaN P-N Junction Blue-Light-Emitting Diodes, Japanese Journal of Appl. Phys. 30, L1998–2001.

    Article  Google Scholar 

  11. Nakamura, S., Senoh, M., and Mukai, T. (1993) High-power InGaN/GaN double-heterostructure violet light emitting diode, Appl. Phys. Lett. 62, 2390–2392.

    Article  CAS  Google Scholar 

  12. Nakamura, S., Mukai, T., and Senoh, M. (1994) Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Appl. Phys. Lett. 64, 1687–1689.

    Article  CAS  Google Scholar 

  13. Campbell, R.B. and Berman, H.S. (1969) Electrical properties of SiC devices, Mater. Res. Bull. 4, 211 -222.

    Google Scholar 

  14. Spetz, A., Arbab, A., and Lundstrom, I. (1994) High-temperature gas sensors based on metal oxide silicon carbide (MOSIC) devices, in Ref. [3], pp. 629–632.

    Google Scholar 

  15. Dmitriev, V.A., Linkov, I.Yu., Morozenko, Ya.V., Chelnokov, V.E. (1992) Hightemperature blue light-emitting diode, Sov. Tech. Phys. Lett. 18, 67.

    Google Scholar 

  16. Urushidani, T., Kobayashi, S., Kimoto, T., and Matsunami, H. (1994) High-voltage Au/6H-SiC Schottky barrier diodes, in Ref. [3], pp. 471–474.

    Google Scholar 

  17. Anikin, M.M., Levinshtein, M.E., Strelchuk, A.M., and Syrkin, A.L. (1992) Breakdown in Silicon Carbide pn Junctions, in G.L. Harris, M.G. Spencer, and C.Y. Yang (eds), Amorphous and Crystalline Silicon Carbide III, Springer, Berlin, pp. 283–285

    Chapter  Google Scholar 

  18. Konstantinov, A.O. (1992) The Temperature Dependence of Impact Ionization in Silicon Carbide, and Related Effects, in: Ref. [17], pp. 213–219.

    Google Scholar 

  19. Strelchuk, A.M., Syrkin, A.L., Chelnokov, V.E., Cherenkov, A.E. and Dmitriev, V.A. (1994) The current, electroluminescence and recombination parameters of SiC pn structures produced by container-free liquid-phase epitaxy, in Ref. [3], pp. 549–552.

    Google Scholar 

  20. Edmond, J.A., Waltz, D.G., Brueckner, S., Kong, H., Palmour, J.W., and Carter, C.H.Jr. (1991) High temperature rectifiers in 6H-silicon carbide, in D.B. King and F.V. Thome (eds), Proceedings of the First International High Temperature Electronics Conference, Albuquerque, NM, pp. 500–505.

    Google Scholar 

  21. Vassilevski, K.V., Dmitriev, V.A., and Zorenko, A.V. (1993) Silicon carbide diode operating at avalanche breakdown current density of 60 kA/cm2, J.Appl.Phys. 74, 7612–7614.

    Article  CAS  Google Scholar 

  22. Dohnke, K., Rupp, R., Peters, D., Volkl, J., and Stephani, D., (1994) 6H-SiC junction field effect transistor for high-temperature applications, in Ref. [3], pp. 625–627.

    Google Scholar 

  23. Rupp, R., Dohnke, K., Volkl J., and Stephani, D. (1994) Normally off 6H-SiC JFET and its high-temperature, in Ref. [3], pp. 503–506.

    Google Scholar 

  24. Palmour, J.W., Kong, H.S., and Davis, R.F. (1987) High-temperature depletion-mode metal-oxide-semiconductor field-effect transistors in beta-SiC thin films Appl. Phys. Lett. 51, 2028–2030.

    Article  CAS  Google Scholar 

  25. Krishnamurthy, V., Brown, D.M., Ghezzo, M., Kretchmer, J., Hennessy, W., Downey, E., and Michon, G. (1994) Planar depletion-mode 6H-SiC MOSFETs, in Ref. [3], pp. 483–486.

    Google Scholar 

  26. Palmour, J.W., Kong, H., Waltz, D.G., Edmond, J.A., and Carter, C.H.Jr. (1994) 6H-silicon carbide transistors for high temperature operation, in Ref. [20], pp. 511–518.

    Google Scholar 

  27. Palmour, J.W. and Lipkin, L.A. (1994) High temperature power devices in silicon carbide, in: Transactions of Second International High Temperature Electronics Conference, Charlotte 1, pp. XI-3 - XI–8.

    Google Scholar 

  28. Davis, R.F. (1989) Epitaxial growth and doping of and device development in monocrystalline ß-SiC semiconductor thin films, Thin Solid Films 181, 1–15.

    Article  CAS  Google Scholar 

  29. Dmitriev, V.A., Levinshtein, M.E., Vainshtain, S.N., and Chelnokov, V.E. (1988) First SiC Dynistor, Electronics Letters 24, 1031–1033.

    Article  Google Scholar 

  30. Palmour, J.W., Edmond, J.A., Kong, H.S., and Carter, C.H.Jr. (1994) Vertical power devices in silicon carbide, in Ref. [3], pp. 499–502.

    Google Scholar 

  31. Brown, D.M., Ghezzo, M., Kretchmer, J., Krishnamurthy, V., Michon, G., Gati, G., (1994) High temperature silicon carbide planar IC technology and first monolithic SiC operational amplifier IC, in Ref. [27] ,pp.XI-17 - XI–22.

    Google Scholar 

  32. Anikin, M.M., Lebedev, A.A., Popov, I.V., Rastegaev, V.P ., Strelchuk, A.M., Syrkin, A.L., Tairov, Yu.M., Tsvetkov, V.F., and Chelnokov, V.E. (1988) Electrical characteristics of epitaxial p+-n-n+ structures made of 6H polytype of silicon carbide, Sov. Phys. Semicond. 22, 181–183.

    Google Scholar 

  33. Neudeck, P.G., Larkin, D.J., Salupo, C.S., Powell, J.A., and Matus, L.G. (1994) 2000 V 6H-SiC pn junction diode, in Ref. [3], pp. 475–478.

    Google Scholar 

  34. Neudeck, P.G., Petit, J.B., and Salupo, C.S. (1994) Silicon carbide buried-gate junction field-effect transistors for high-temperature power electronic applications, in Ref. [31], pp. X-23 - X–28.

    Google Scholar 

  35. Vassilevski, K.V., Zorenko, A.V., Dmitriev, V.A. (1993) Presented at the Fifth Conference on Silicon Carbide and Related Materials, November 1993, Washington DC.

    Google Scholar 

  36. Sriram, S., Clarke, R.C., Hanes, M.H., McMullin, P.G., Brandt, C.D., Smith, T.J., Burk, A.A., Hobgood, H.M., Barrett, D.L., Hopkins, R.H. (1994) SiC microwave power MESFETs, in Ref. [3], pp. 491–494.

    Google Scholar 

  37. Palmour, J.W., Weitzel, C.E., Nordquist, K., and Carter, C.HJr. (1994) Silicon carbide microwave FETs, in Ref. [3], pp. 495–498.

    Google Scholar 

  38. Khan, M.A., Kuznia, J.N., Olson, D.T., Schaff, W.J., Burm, J.W., Shur, M.S., (1994) Deep Submicron AlGaN/GaN Heterostructure Field Effect Transistors for Microwave and High Temperature Applications, 52nd Annual Device Research Conference, Colorado, p. VIB–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chelnokov, V.E., Vassilevski, K.V., Dmitriev, V.A. (1995). Wide Band Gap Electronic Devices. In: Prelas, M.A., Gielisse, P., Popovici, G., Spitsyn, B.V., Stacy, T. (eds) Wide Band Gap Electronic Materials. NATO ASI Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0173-8_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0173-8_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4078-5

  • Online ISBN: 978-94-011-0173-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics