Skip to main content

Doping of Diamond-Like Carbon Films

  • Chapter
Wide Band Gap Electronic Materials

Part of the book series: NATO ASI Series ((ASHT,volume 1))

Abstract

In this paper electrical properties of heterojunction silicon-Al doped DLC were analysed. The Al doped DLC films (DLC:Al) were obtained by the RF decomposition of methane with in situ magnetron sputtering of doping materials. The obtained p-n junction characteristics and TEM observations indicated that aluminium could be introduced into DLC. An inexpensive new method for manufacturing doped-DLC materials on a very large surface is offered. One should underline that this doping method dispenses with the use of poisonous substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gildenblat, G.Sh., Grot, S., Wronski, C.R., Badzian, A.R., Badzian, T., and Messier, C.R. (1988) Electrical characteristics of Schottky diodes fabricated using plasma-assisted CVD diamond films, Appl. Phys. Lett. 53 (7), 586–588.

    Article  CAS  Google Scholar 

  2. Shiomi, H., Nishibayashi, I., and Fujimori, N. (1989) Field-effect transistors using boron-doped diamond epitaxial films, Jap. J. Appl. Phys. 28 L 2, 153–154.

    Google Scholar 

  3. Geis, M.W., Efremov, N.N., and Rathman, D.D. (1988) Device applications of diamonds, in G.H.Johnson, M.Geis and A.Badzian (eds.), Diamond and Diamondlike Material Science and Engineering Study, Materials Research Society, Pittsburgh, PA.

    Google Scholar 

  4. Geis, M.W., Rathman, D.D., Ehrlich, D.J., Murphy, R.A., and Lindley, W.T. (1987) High temperature point contact transistor and Schottky diodes formed on synthetic boron-doped diamond, IEEE Elect. Dev. Lett. EDL-8, 341–343.

    Article  CAS  Google Scholar 

  5. Werner, M., Schlichting, V. and Obermeier, E. (1992) Thermistor based on doped polycrystalline diamond thin films, Diamond and Related Materials 1, 669–672.

    Article  CAS  Google Scholar 

  6. Tessmer, A.J., Das, K., Dreifus, D.L. (1992) Polycrystalline diamond field-effect transistors, Diamond and Related Materials 1, 89–92.

    Article  CAS  Google Scholar 

  7. Fujimori, N., Imai, T., and Doi, A. (1986) Characterization of conducting diamond films, Vacuum 36, 99–102.

    Article  CAS  Google Scholar 

  8. Nishimura,K., Das, K., and Glass, J.T. (1991) Material and electric characterization of polycrystalline boron-doped diamond films grown by microwave plasma chemical vapor deposition, J. Appl. Phys. 69, 3142–3148.

    Article  CAS  Google Scholar 

  9. Okano, K., Naruki, H., Akiba, Y., Kurosu, T., Iida, M., Hirose Y. and Nakamura, T., (1989) Characterization of boron-doped diamond film, Jpn. J. Appl. Phys. 28, 1066–1071.

    Article  CAS  Google Scholar 

  10. Geis, M.W., Efremov, N.N., Woodhouse, J.D. and McAleese, M.D. (1991) Diamond cold cathodes, in Y. Tzeng, M. Yoshikawa, M. Murakawa and A. Feldman (eds.), Applied of Diamond Films and Related Materials, Elsevier Sci. Publ. B.V., Amsterdam, p. 309–310.

    Google Scholar 

  11. Prins, J.F. (1982) Bipolar transistor action in ion implanted diamond, Appl. Phys. Lett. 41, 950–952.

    Article  CAS  Google Scholar 

  12. Spear, K. (1989) Diamond -ceramic coating of the future, J. Amer. Ceram. Soc. 72, 171–191.

    Article  CAS  Google Scholar 

  13. Meyerson, B., and Smith, F.W. (1980) Chemmical modyfication of the elctrical properties of hydrogenated amorphous carbon films, Solid State Commun. 34, 531–534.

    Article  CAS  Google Scholar 

  14. Meyerson, B., and Smith, F.W. (1982) Thermopower of doped semiconducting hydrogenated amorphous carbon films, Solid State Commun. 41, 23–27.

    Article  CAS  Google Scholar 

  15. Jones, D.I., and Stewart, A. (1982) Properties of hydrogenated amorphous carbon films and the effects of doping, Philosophical Mag. B46, 423–434.

    Google Scholar 

  16. Dimigen, H., Hubsch, H., and Memming, R. (1987) Tribological and electrical properties of metal-containing hydrogenated carbon films, Appl. Phys. Lett. 50, 1056–1058.

    Article  CAS  Google Scholar 

  17. Chen, P.A. (1989) Characteristics of copper-incorporated amorphous carbon film, Thin Solid Films 182, 261–263.

    Article  CAS  Google Scholar 

  18. Demichelis, F., Kamiadakis, G., Mpawenayo, P., Perino, M.A., Tagliaferro, A., Tresso, E., Rava, P., Delia Mea, G., and Vallino, M. (1987) Structure and optical properties of hydrogenated amorphous carbon-tin alloys prepared using the sputterassisted plasma chemical deposition technique, Thin Solid Films 150, 189.

    Article  CAS  Google Scholar 

  19. Despax, B., Flouttard, J.L. (1989) Synthesis of gold-carbon composites by simultaneous sputtering and plasma polymerization of propane in R.F. capacitively coupled diode system (13.56 MHz), Thin Solid Films 168, 81– 88.

    Article  CAS  Google Scholar 

  20. Gerstenberg, K.W., and Grischke, M. (1991) Thermal gas evolution studies on a-C:H:Ta films, J. Appl. Phys. 69, 736 739.

    Article  CAS  Google Scholar 

  21. Biederman, H., and Martinu, L. (1990) in R. d’Agostino (ed.), Plasma Deposition, Treatment and Etching of Polymers, Academic Press, Boston, MA, Chapter 4.

    Google Scholar 

  22. Biederman, H., Chudacek, I., Slavinska, D., Martinu, L., David, J., and Nespurek, S. (1989) Physical properties of metal/a-C:H composite, Vacuum 39, 13.

    Article  CAS  Google Scholar 

  23. Wrobel, M., Czeremuszkin, G., Szymanowski, H., Szur, H., Klemberg-Sapieha, J.E. and Wetheimer, M.R. (1992) Plasma CVD of iron -containing hydrogenated carbon films, J. Chem. Vapor Deposition 1, 41–58.

    Google Scholar 

  24. Amir, O. and Kalish, R. (1992) Doping of amorphous-hydrogenated carbon films by ion implantation, Diamond and Related Materials 1, 364–368.

    Article  CAS  Google Scholar 

  25. Szmidt, J., Olszyna, A., Sokolowska, A., Mitura, S. (1994) In-situ doping of DLC layers, ISCDF-94, Minsk, 2–5 May, Paper No. 5–1.

    Google Scholar 

  26. Has, Z., Mitura, S., Cłapa, M. and Szmidt, J. (1986) Electrical properties of thin carbon films obtained by RF methane decomposition on RF-powered negatively self-biased electrode, Thin Solid Films 136, 161–165.

    Article  CAS  Google Scholar 

  27. Mitura, S., Has, Z. and Gorokhovsky, V. (1991) The system for depositing hard diamond-like films onto complex-shaped machine elements in an r.f. arc plasma, Surf. Coatings Technol. 47, 106–112.

    Article  CAS  Google Scholar 

  28. Mitura, S. (1992) Radio-frequency hot-filament CVD of diamond, Diamond and Related Materials 1, 239–242.

    Article  CAS  Google Scholar 

  29. Staryga, E., Lipinski, A., and Mitura, S. (1986) Electrical conductivity and optical absorption of carbon films produced by RF decomposition of hydrocarbon, Thin Solid Films 145, 17–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mitura, S., Szmidt, J., Sokołowska, A. (1995). Doping of Diamond-Like Carbon Films. In: Prelas, M.A., Gielisse, P., Popovici, G., Spitsyn, B.V., Stacy, T. (eds) Wide Band Gap Electronic Materials. NATO ASI Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0173-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0173-8_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4078-5

  • Online ISBN: 978-94-011-0173-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics