Skip to main content

Micromachined Flow-Through Measurement Chambers Using LAPS Chemical Sensors

  • Conference paper
  • 175 Accesses

Abstract

Micro Total Analysis Systems (µTAS) are envisioned as small analytical systems with incorporated sample handling. We discuss the concept of a system consisting of a microflow chamber in which a biological component is immobilized, and a chemical sensor which is part of the chamber. A particularly suitable sensor is the Light-Addressable Potentiometric Sensor (LAPS), due to its compatibility with micromachined surfaces and structures. Flow chambers are made by anisotropically etching channels in silicon, at the bottom of which one or more LAPS devices are defined. Eight separate flow channels are present on a 23 mm square chip. Data is presented on two types of biological components: enzymes and living cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Bergveld, Development of an ion-sensitive solid-state device forneurophysiological measurements, IEEE Trans. Biomed. Eng., BME-17 (1970) 70–71.

    Article  Google Scholar 

  2. P. Bergveld, Development, operation, and application of theion-sensitive field effect transistor, a tool for electrophysiology, IEEETrans. Biomed. Eng., BME-19 (1972) 342.

    Article  Google Scholar 

  3. J. Briggs, et al., Total DNAassay system, Amer. Biotech. Lab., 7 (1989) 34–38.

    CAS  Google Scholar 

  4. H.M. McConnell, J.C. Owicki, J.W. Parce, D.L. Miller,G.T. Baxter, H.G. Wada, and S. Pitchford, The cytosensormicrophysiometer: biological applications of silicon technology, Science, 257(1992)1906–1912.

    Article  CAS  Google Scholar 

  5. G. Davis, Development of a commercial multichannel clinical sensorchip, Third World Congress on Biosensors. New Orleans, 1994.

    Google Scholar 

  6. K. Potjekamloth, J. Janata, and M. Josowicz, Electrochemicalencapsulation for sensors, Sensors and Actuators, 18 (1989) 415–425.

    Article  CAS  Google Scholar 

  7. H.H. van den Vlekkert, N.F. de Rooij, A. van den Berg, and A. Grisel, Multi-ion sensingsystem based on glass-encapsulated pH-ISFETs and a pseudo-REFET,Sensors and Actuators B, 1 (1990) 395–400.

    Article  Google Scholar 

  8. J.R. Haak, P.D. van der Wal, and D.N. Reinhoudt, Molecular materials for thetransduction of chemical information by CHEMFETs, Sensors andActuators B, 8 (1992) 211–219.

    Article  Google Scholar 

  9. P.D. van der Wal, A. van den Berg, and N.F. de Rooij, Universal approach for the fabrication of Ca2+,K+ and NO3- sensitive membrane ISFETs, Sensors and Actuators B,18-19 (1994) 200–207.

    Google Scholar 

  10. S.C. Terry, A gas chromatography system fabricated on asilicon wafer using integrated circuit technology, Ph.D. Dissertation, StanfordUniversity, 1975.

    Google Scholar 

  11. S.C. Terry, J.H. Jerman, and J.B. Angell, A gas Chromatograph air analyzer fabricated on a silicon wafer, IEEETrans. Electron Devices, ED-26 (1979) 1880.

    Article  CAS  Google Scholar 

  12. D.J. Harrison, K. Fluri, K. Seiler, Z. Fan, C.S. Effenhauser, and A. Manz, Micromachining a miniaturized capillary electrophoresis -based chemical analysis systemon a chip, Science, 261 (1993) 895–897.

    Article  CAS  Google Scholar 

  13. A. Manz, N. Graber, and H.M. Widmer, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sensors and Actuators B, 1 (1990)244–248.

    Article  Google Scholar 

  14. S.M. Barnard and D.R. Walt, Chemical sensors based oncontrolled-release polymer systems, Science, 251 (1991) 927–929.

    Article  CAS  Google Scholar 

  15. M.T. Flanagan, A.M. Sloper, and R.H. Ashworth, Fromelectronic to opto-electronic biosensors: an engineering view, Anal. Chim.Acta, 213 (1988) 23–33.

    Article  CAS  Google Scholar 

  16. L. Bousse, J.C. Owicki, and J.W. Parce, Biosensors withmicrovolume reaction chambers, in S. Yamauchi (ed.), Chemical Sensor Technology, Vol. 4, Kodansha/Elsevier, Tokyo and Amsterdam, 1992, pp. 145–166.

    Google Scholar 

  17. L.J. Bousse, G. Kirk, and G. Sigal, Biosensors fordetection of enzymes immobilized in microvolume reaction chambers, Sensors andActuators B, 1 (1990) 361–367.

    Article  Google Scholar 

  18. J.W. Parce, J.C. Owicki, K.M. Kercso, G.B. Sigal, H.G.Wada, V.C. Muir, L.J. Bousse, K.L. Ross, B.I. Sikic, andH.M. McConnell, Detection of cell-affecting agents with a silicon biosensor, Science,246(1989)243–247.

    Article  CAS  Google Scholar 

  19. J.C. Owicki and J.W. Parce, Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification, Biosensorsand Bioelectronics, 7 (1992) 255–272.

    Article  CAS  Google Scholar 

  20. J.C. Owicki, L. Bousse, D.G. Hafeman, G.L. Kirk, J.D. Olson, H.G. Wada,and J.W. Parce, The light-addressable potentiometric sensor: principles andbiological applications, Ann. Rev. Biophys. Biomol. Struct.,23 (1994)87–113.

    Article  CAS  Google Scholar 

  21. H.M. McConnell, P. Rice, H.G. Wada, J.C. Owicki, and J.W.Parce, The microphysiometer biosensor, Current Opinionin Structural Biology, 1 (1991) 647–652.

    Article  CAS  Google Scholar 

  22. J.D. Olson, P.R. Panfili, R. Armenta, M. Femmel, H. Merrick, J. Gumperz,M. Goltz, and R.F. Zuk, A silicon sensor-based filtration immunoassay usingbiotin-mediated capture, J. Immunological Methods, 134 (1990) 71–79.

    Article  CAS  Google Scholar 

  23. J.M. Libby and G.W. Wada, Detection of NeisseriaMeningitidis and Yersinia Pestis with a Novel Silicon Based Sensor, J. Clin.Micro., 27 (1989) 1456–1459.

    CAS  Google Scholar 

  24. K. Dill, M. Lin, C. Poteras, C. Fraser, J.C.O. Owicki, D.G. Hafeman, and J. Olson, Determinationof solution phase antibody-antigen binding constants withthe threshold system. equilibrium binding constants for anti-fluorescein,anti-saxitoxin, and anti-ricin Antibodies, Anal. Biochem., 217 (1994) 128–138.

    Article  CAS  Google Scholar 

  25. D.L. Miller and J.C. Owicki, PMA induces a change inphenotype of TE671 cells from a smooth muscle-type towards a skeletal orcardiac muscle-type, 33d Annual Meeting of the ASCB. New Orleans, 1993.

    Google Scholar 

  26. L. Bousse, R.J. McReynolds, G. Kirk, T. Dawes, P. Lam, W.R. Bemiss, andJ.W. Parce, Micromachined multichannel systems for the measurement ofcellular metabolism, International Conferenceon Solid State Sensors and Actuators, Yokohama, 1993, pp. 916–920.

    Google Scholar 

  27. L.J. Bousse, R.J. McReynolds, G. Kirk, P. Lam, and J.W.Parce, Integrated Fluidics for Biosensors Used to Measure Cellular Metabolism, Proceedingsof the Symposium on Chemical Sensors II, Proceedingsof the Electrochemical Society. Hawaii, 1993, pp. 742–745.

    Google Scholar 

  28. P. Wilding, J. Pfahler, H.H.Bau, J.N. Zemel, and L.J. Kricka, Manipulation and flow ofbiological fluids in straight channels micromachined in silicon, ClinicalChemistry, 40 (1994) 43–47.

    CAS  Google Scholar 

  29. L.J. Bousse, J.W. Parce, J.C. Owicki, and K.M. Kercso,Silicon micromachining in the fabrication of biosensorsusing living cells, Technical Digest IEEE Solid State Sensor and ActuatorWorkshop, HiltonHead S.C.,1990, pp.173–176.

    Google Scholar 

  30. D.G. Hafeman, J.W. Parce, and H.M. McConnell,Light-addressable potentiometric sensor for biochemical systems, Science, 240 (1988)1182–1185.

    Article  CAS  Google Scholar 

  31. L. Bousse, S. Mostarshed, D. Hafeman, M. Sartore, M.Adami, and C. Nicolini, Investigation of carrier transportthrough silicon wafers by photocurrent measurements, J. App. Phys., 75 (1994) 4000–4008.

    Article  CAS  Google Scholar 

  32. J.C. Owicki, J.W. Parce, K.M. Kercso, G.B. Sigal, V.C.Muir, J.C. Venter, CM. Fraser, and H.M. McConnell, Continuous monitoring of receptor-mediatedchanges in the metabolic rates of living cells, Proc. Natl. Acad. Sci. USA, 87(1990) 400–4011.

    Article  Google Scholar 

  33. C. Bouvier, J.A. Salon, R.A. Johnson, and O. Civelli, Dopaminergicactivity measured in D1 and D2-transfected fibroblasts bysilicon-microphysiometry, J. Receptor Res., 13 (1993) 559–571.

    CAS  Google Scholar 

  34. G.T. Baxter, D.L. Miller, R.C. Kuo, H.G. Wada, and J.C.Owicki, PKCℇ is involved inGM-CSF Signal transduction. Evidence from microphysiometry andantisense oligonucleotide experiments, Biochemistry, 31 (1992)10950–10954.

    Article  CAS  Google Scholar 

  35. P. Catroux, A. Rougier, K.G. Dossou, and M. Cottin, Thesilicon microphysiometer for testing ocular toxicity in vitro, Toxicologyin Vitro, 7 (1994) 465–469.

    Article  Google Scholar 

  36. L.H. Bruner, K.R. Miller, J.C. Owicki, J.W. Parce, andV.C. Muir, Testing ocular irritancy in vitro with thesilicon microphysiometer, Toxicology In Vitro, 5 (1991) 277–284.

    Article  CAS  Google Scholar 

  37. P. Gravesen, J. Branebjerg, and O.S. Jensen,Microfluidics — a review, J. Micromech. Microeng., 3 (1993) 168–182.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Bousse, L., McReynolds, R. (1995). Micromachined Flow-Through Measurement Chambers Using LAPS Chemical Sensors. In: Van den Berg, A., Bergveld, P. (eds) Micro Total Analysis Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0161-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0161-5_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4072-3

  • Online ISBN: 978-94-011-0161-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics