Skip to main content

Casimir Operator and Wavelet Transform

  • Chapter
Harmonic Analysis in China

Part of the book series: Mathematics and Its Applications ((MAIA,volume 327))

  • 362 Accesses

Abstract

Let D be the unit disk in the complex plane equipped with the Lebesque measure dm(z). The Moebius group G = SU(1,1) consists of all 2 × 2 complex matrices

$$ g = \left( {\begin{array}{*{20}c} a \\ c \\ \end{array} \begin{array}{*{20}c} b \\ d \\ \end{array} } \right)a,b,c,d \in C $$

with \( c = \overline b ,d = \overline a ,ad - bc = 1. \)It acts on D via transformations

$$ z \to gz: = g(z) = \frac{{az + b}} {{cz + d}} $$

Research was supported in part by the National Natural Science Foundation of China

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Part I, Comm. Pure Appl. Math. 14 (1961), 187–214.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Daubechies, J. Klauder and T. Paul, Wiener measures for path integrals with affine kinematic variables, J. Math. Phys. 28 (1987).

    Google Scholar 

  3. G. Folland, “ Harmonic analysis in phase space”, Princeton Univ. Press (1989).

    MATH  Google Scholar 

  4. A. Grossmann and J. Morlet, Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal. 15 (1984), 723–736.

    Article  MathSciNet  MATH  Google Scholar 

  5. Harish-Chandra, Plancherel formula for semi-simple Lie Groups, Trans Amer. Math. Soc. 76 (1954), 485–528.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Helgason, “Groups and Geometric Analysis”, Academic Press, New York-London (1984).

    MATH  Google Scholar 

  7. S. Janson and J. Peetre, Paracommutators-boundedness and Schatten-von Neumann properties, Trans. Amer. Math. Soc. 305 (1988), 467–504.

    MathSciNet  MATH  Google Scholar 

  8. Q. Jiang and L. Peng, Wavelet transform and Toeplitz-Hankel type operators, Math. Scand. 70 (1992), 247–264.

    MathSciNet  MATH  Google Scholar 

  9. Q. Jiang and L. Peng, Toeplitz and Hankel type operators on the upper half-plane, Int. Eq. Operator Theory, 15 (1992), 744–767.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Liu and L. Peng, Weighted Plancheral formula. Irreducible unitary representations and eigenspace representations, to appear in Math. Scand. (1993).

    Google Scholar 

  11. W. Magnus, F. Oberhettinger and R. Soni, “Formulas and Theorems for the Special Functions of Mathematical Physics”, Springer-Verlag Berlin Heidelberg New York (1966).

    MATH  Google Scholar 

  12. P. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Physical Review, 34 (1929), 57–64.

    Article  MATH  Google Scholar 

  13. T. Paul, Functions analytic on the half-plane as quantum mechanical states, J. Math. Phys. 25 (1985), 3252–3263.

    Article  Google Scholar 

  14. J. Peetre, L. Peng and K. Zhang, A weighted Plancherel formula I. The case of the unit disk. applications to Hankel operators, Report No. 11, Stockholm University (1990).

    Google Scholar 

  15. L. Peng, Paracommutator of Schatten-von Neumann class S p ,0 < p < 1, Math. Scand. 61 (1987), 68–92.

    MathSciNet  MATH  Google Scholar 

  16. L. Peng and K. Zhang, Invariant Hankel operators, preprint.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jiang, Q., Peng, L. (1995). Casimir Operator and Wavelet Transform. In: Cheng, M., Deng, Dg., Gong, S., Yang, CC. (eds) Harmonic Analysis in China. Mathematics and Its Applications, vol 327. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0141-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0141-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4064-8

  • Online ISBN: 978-94-011-0141-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics