Skip to main content

From Thermoelasticity to Surface Melting

Including applications in computer simulations

  • Chapter
Science and Technology of Crystal Growth

Abstract

In this contribution, we present the fundamental background of a thermoelastic criterion for surface melting with applications in Monte Carlo and/or Molecular Dynamics studies of atomic slabs and interfaces. As an example, we show some simulation results for different faces of Lennard-Jones (Ar) and Buckminster fullerene (C60) crystals. It turns out that for some of these systems the surface layer melts below the bulk melting point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.F. van der Veen and J.W.M. Frenken, Surface Sci. 178 (1986) 382

    Article  Google Scholar 

  2. B.B. Liard and A.D.J. Haymet, Chem. Rev. 92 (1992) 1819

    Article  Google Scholar 

  3. J.Q. Broughton and G.H. Gilmer, J. Chem. Phys. 84 (1986) 5749

    Article  CAS  Google Scholar 

  4. J.P. van der Eerden, H.J.F. Knops and A. Roos, J. Chem. Phys. 96 (1992) 714

    Article  Google Scholar 

  5. J.P. van der Eerden, T.H.M. van den Berg, J. Huinink and H.J.F. Knops, J.Crystal Growth 128 (1993) 57

    Article  Google Scholar 

  6. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Berlin, 1928)

    Google Scholar 

  7. F.D. Mumaghan, Am. J. Math 59 (1937) 235

    Article  Google Scholar 

  8. L. Brillouin, Tensors in Mechanics and Elasticity (Academic Press, New York, 1964)

    Google Scholar 

  9. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)

    Google Scholar 

  10. K. Huang, Proc. Roy. Soc. (London) A203 (1950) 178

    Google Scholar 

  11. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1986)

    Google Scholar 

  12. J. P. van der Eerden, in Science and Technology of Crystal Growth, Eds. J.P. van der Eerden and O.S.L. Bruinsma (Kluwer Academic Publishers, Dordrecht, 1995) ch. 1.2

    Chapter  Google Scholar 

  13. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1966)

    Google Scholar 

  14. J. Ray and A. Rahman, J. Chem. Phys. 80 (1984) 4423

    Article  CAS  Google Scholar 

  15. J. Ray and A. Rahman, Phys. Rev. B32 (1985) 733

    Google Scholar 

  16. J.F. Lutsko, J. Appl. Phys. 65 (1989) 2991

    Article  Google Scholar 

  17. J.F. Lutsko, in Computer Simulation in Materials Science, Eds. M. Meyer and V. Pontikis (Kluwer Academic Publishers, The Netherlands, 1991) 335

    Chapter  Google Scholar 

  18. K.W. Jacobsen, J. Norskov and M.J. Puska, Phys. Rev. B35 (1987) 7423

    Google Scholar 

  19. J.F. Lutsko, J. Appl. Phys. 64 (1988) 1152

    Article  Google Scholar 

  20. P. Schoneld and J.R. Henderson, Proc. R. Soc. Lond. A379 (1982) 231

    Google Scholar 

  21. F.D. Murnaghan, Finite Deformation of an Elastic Solid (Wiley, New York, 1951)

    Google Scholar 

  22. S.W. Lovesey, Theory of Neutron Scattering from condensed Matter 2 (Clarendon Press, Oxford, 1984)

    Google Scholar 

  23. H. Goldstein, Classical Mechanics (Addison-Wesley, Massachusetts, 1980)

    Google Scholar 

  24. J.H. Weiner, Statistical Mechanics of Elasticity (Wiley, New York, 1983)

    Google Scholar 

  25. D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)

    Google Scholar 

  26. R.A. Piccirelli, Phys. Rev. 175 (1968) 77

    Article  Google Scholar 

  27. J.H. Irving and J.G. Kirkwood, J. Chem. Phys. 18 (1950) 817

    Article  CAS  Google Scholar 

  28. T.H.M. van den Berg and J.P. van der Eerden (private notes, 1994)

    Google Scholar 

  29. L.A. Girifalco, J. Phys. Chem. 96 (1992) 858

    Article  CAS  Google Scholar 

  30. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987)

    Google Scholar 

  31. M.H.J. Hagen, E.J. Meijer, G.C.A.M. Mooij, D. Frenkel and H. Lekkerkerker, Nature 365 (1993) 425

    Article  CAS  Google Scholar 

  32. A.Cheng, M.L. Klein and C. Caccamo, Phys. Rev. Lett. 71 (1993) 1200

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Den Berg, T.H.M., Van Der Eerden, J.P. (1995). From Thermoelasticity to Surface Melting. In: van der Eerden, J.P., Bruinsma, O.S.L. (eds) Science and Technology of Crystal Growth. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0137-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0137-0_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4062-4

  • Online ISBN: 978-94-011-0137-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics