Skip to main content

Molecular Orbital Approach of Skeletal Isomerism and Polyhedral Rearrangements in Some Organometallic Clusters

  • Chapter
The Synergy Between Dynamics and Reactivity at Clusters and Surfaces

Part of the book series: NATO ASI Series ((ASIC,volume 465))

Abstract

The bonding and structure in transition-metal clusters is generally well understood with the help of the Polyhedral Skeletal Electron Pair (PSEP) theory [1]. This theory provides simple rules, known as the Wade-Mingos rules within the organometallic community, which describe the relationship between the geometry of the cluster and its number of valence electrons. The theoretical basis of these rules have been developped later by Stone within the framework of the Tensor Surface Harmonic (TSH) theory [2]. Historically they have been established first for simple main-group clusters, such as boranes and carboranes, and subsequently generalized to transitionmetal clusters with the help of the isolobal analogy [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wade, K. (1976) Adv. Inorg. Chem. Radiochem. b, 1.

    Article  CAS  Google Scholar 

  2. Wade, K. (1981) in B.F.G. Johnson (ed), Transition Metal Clusters ,John Wiley and Sons Publishers, New York, p 193.

    Google Scholar 

  3. Mingos, D.M.P. and Wales, D.J. (1990) Introduction to Cluster Chemistry ,Prentice-Hall Publishers, Englewood Cliffs.

    Google Scholar 

  4. Stone, A.J. (1980) Mol. Phys. 41, 1339.

    Article  CAS  Google Scholar 

  5. Stone, A.J. (1981) Inorg. Chem. 20, 563.

    Article  CAS  Google Scholar 

  6. Stone, A.J. and Alberton, M. J. (1982) Inorg. Chem. 21, 2297

    Article  CAS  Google Scholar 

  7. Stone, A.J. (1984) Polyhedron 31299.

    Article  CAS  Google Scholar 

  8. Hoffmann, R. (1982) Angew. Chem. Int. Ed. Engl. 21, 711.

    Article  Google Scholar 

  9. McPartlin, M., Eady, C.R., Jonhson, B.F.G. and Lewis, J. (1976) J. Chem. Soc. Chem. Commun. 883.

    Google Scholar 

  10. Mingos, D.M.P. and Forsyth, M.I. (1977) J. Chem. Soc. Dalton Trans. 610.

    Google Scholar 

  11. Wucherer, E., Tasi, M., Hansen, B., Powell, A.K., Garland, M.T., Halet, J.-F., Saillard, J.-Y. and Vahrenkamp, H. (1989) Inorg. Chem. 28, 3564.

    Article  CAS  Google Scholar 

  12. Stohrer, W.-D. and Hoffmann, R. (1972) J. Am. Chem. Soc. 94, 779.

    Article  CAS  Google Scholar 

  13. Jaouen, G., Marinetti, A., Saillard, J.-Y., Sayer, B.G. and McGlinchey, M.J. (1982) Organometallics 1, 225.

    Article  CAS  Google Scholar 

  14. Mlekuz, M., Bougeard, P., Sayer, B.G., Peng, S., McGlinchey, M.J., Marinetti, A., Saillard, J.-Y., Ben Naceur, J., Mentzen, B. and Jaouen, G. (1985) Organometallics 4 ,1123.

    Article  CAS  Google Scholar 

  15. Deeming, A.J. (1978) J. Organomet. Chem. 150, 123.

    Article  CAS  Google Scholar 

  16. Schilling, B.E.R. and Hoffmann, R. (1979) Acta Chem. Scand. B33, 231.

    Article  CAS  Google Scholar 

  17. Bantel, H., Hansen, B., Powell, A.K., Tasi, M. and Vahrenkamp, H. (1989) Angew. Chem. Int. Ed. Engl. 28, 1059.

    Article  Google Scholar 

  18. Song, J.-S., Han, S.-H., Nguyen, S.T., Geoffroy, G.L. and Rheingold, A.L. (1990) Organometallics 9, 2386.

    Article  CAS  Google Scholar 

  19. Kahlal, S., Halet, J.-F., Saillard, J.-Y. (1991) New J. Chem. 15, 843.

    CAS  Google Scholar 

  20. Keller, E. and Wolters D. (1984) Chem. Ber. 117, 1572.

    Article  CAS  Google Scholar 

  21. Jutzi, P., Kroos, R., Müller, A. and Penk, M. (1989) Angew. Chem. Int. Ed. Engl. 28, 600.

    Article  Google Scholar 

  22. Braunstein, P., de Maric de Bellefon, C., Bouaoud, S.-E., Grandjean, D., Halet, J.- F. and Saillard, J.-Y. (1991) J. Am. Chem. Soc. 113, 5282.

    Article  CAS  Google Scholar 

  23. Farrugia, L.J., Howards, J.A.K., Mitprachachon, P., Stone, F.G.A. and Woodward, P.J. (1981) J. Chem. Soc. Dalton Trans. 1134. Ibid. 1274.

    Google Scholar 

  24. Braunstein, P., Dehand, J. and Nenning, J.-F. (1975) J. Organomet. Chem. 92, 117.

    Article  CAS  Google Scholar 

  25. Bhaduri, S., Sharma, K.R., Clegg, W., Sheldrick, G.M. and Stalke, D. (1984) J. Chem. Soc. Dalton Trans. 2851.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saillard, JY., Garland, M.T., Kahlal, S., Halet, JF. (1995). Molecular Orbital Approach of Skeletal Isomerism and Polyhedral Rearrangements in Some Organometallic Clusters. In: Farrugia, L.J. (eds) The Synergy Between Dynamics and Reactivity at Clusters and Surfaces. NATO ASI Series, vol 465. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0133-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0133-2_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4060-0

  • Online ISBN: 978-94-011-0133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics