Skip to main content

Zeolite Guest-Host Interactions: Implications in Formation, Catalysis, and Photochemistry

  • Chapter
Inclusion Chemistry with Zeolites: Nanoscale Materials by Design

Part of the book series: Topics in Inclusion Science ((TISC,volume 6))

  • 271 Accesses

Abstract

Zeolites are crystalline aluminosilicates with the composition Mx/n•(A1O2)x•(SiO2)y•wH2O [1]. The framework is formed by -Si-O-Al(Si)- bonds and about 75 different topologies comprising of cages and channels with varying molecular dimensions are known [2]. The intracrystalline zeolitic space is occupied by H2O molecules which can be removed upon heating. The Mn+ cations, which neutralize the charge carried by the tetrahedral framework aluminum, are readily exchangeable. The close match in size between reactant molecules and the zeolite interior has been extensively exploited in hydrocarbon transformations, leading to many novel processes[3]. Reactions showing selectivity towards specific reactants, formation of specific products, as well as novel control of the transition state and molecular traffic control due to different intrazeolitic diffusivities of reactants and products, have all been observed [4]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. W. Breck, Zeolite Molecular Sieves, Krieger Publishing, Malabar, Florida (1984).

    Google Scholar 

  2. J. M. Newsam, Science, 231, 1093 (1986).

    Article  CAS  Google Scholar 

  3. J. W. Ward, Applied Industrial Catalysis, 3, 271 (1984).

    CAS  Google Scholar 

  4. S. Csicsery, Zeolites, 4, 202 (1984).

    Article  CAS  Google Scholar 

  5. B. M. Lok, T.R. Cannan, and C.A. Messina, Zeolites, 3, 282 (1983);

    Article  Google Scholar 

  6. R.M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, London (1982).

    Google Scholar 

  7. M. E. Davis and R. F. Lobo, Chem. Mater., 4, 756 (1992).

    Article  CAS  Google Scholar 

  8. P. K. Dutta and D. C. Shieh, J. Phys. Chem., 90, 2331 (1986).

    Article  CAS  Google Scholar 

  9. P. K. Dutta, D. C. Shieh, and M. Puri, J. Phys. Chem., 91, 2332 (1987).

    Article  CAS  Google Scholar 

  10. P. K. Dutta, D. C. Shieh, and M. Puri, Zeolites, 8, 306 (1988).

    Article  CAS  Google Scholar 

  11. P. K. Dutta, M. Puri, and D.C. Shieh, Mater. Res. Soc. Symp. Proc., 111, 101 (1988).

    Article  CAS  Google Scholar 

  12. P. K. Dutta, K. M. Rao, and J. Y. Park, J. Phys. Chem., 95, 6654 (1991).

    Article  CAS  Google Scholar 

  13. A. V. McCormick and A. T. Bell, Catal. Rev. Ser. Eng., 31, 97 (1988).

    Article  Google Scholar 

  14. P. Bodart, J. B. Nagy, Z. Gabelica, and E. G. Derouane, J. Chim. Phys., 83, 777 (1986).

    CAS  Google Scholar 

  15. C. D. Chang and A. T. Bell, Catal. Lett., 8, 305 (1991).

    Article  CAS  Google Scholar 

  16. D. A. Long, Raman Spectroscopy, McGraw-Hill, NY (1977);

    Google Scholar 

  17. D. Lin-Vien, N. B. Colthup, W. G. Fateley and J. G. Grasselli, Infrared and Raman Characteristic Frequencies of Organic Compounds, Academic Press, NY (1991).

    Google Scholar 

  18. H. Kacirek and H. Lechert, ACS Symp. Ser., 40, 244 (1977).

    Article  CAS  Google Scholar 

  19. P. A. Jacobs and J. A. Martens, Synthesis of High-Silica Aluminosilicate Zeolites, Elsevier, Amsterdam (1987);

    Google Scholar 

  20. S. Ueda, H. Murata, and M. Koizumi, Am. Mineral., 65, 1012 (1980);

    Google Scholar 

  21. E. N. Givens, C. J. Plank, and E. J. Rosinski, U. S. Patent 4,052,472, (1972).

    Google Scholar 

  22. G. T. Kokotailo, D. H. Olson, S. L. Lawton, and W. M. Meier, Nature (London), 272, 437 (1978).

    Article  CAS  Google Scholar 

  23. A. Araya and B. M. Lowe, J. Chem. Res., 192, (1985).

    Google Scholar 

  24. P. K. Dutta, B. DelBarco, and D. C. Shieh, Chem. Phys. Lett., 127, 200 (1986).

    Article  CAS  Google Scholar 

  25. B. D. McNicol, G. T. Pott, K. R. Loos, and N. Mulder, Adv. Chem. Ser., 121, 152 (1973).

    Article  CAS  Google Scholar 

  26. A. Zalkin, Acta Crystallogr., 10, 557 (1957).

    Article  CAS  Google Scholar 

  27. P. K. Dutta and M. Puri, J. Phys. Chem., 91, 4329 (1987).

    Article  CAS  Google Scholar 

  28. P. K. Dutta, K. M. Rao, and J. Y. Park, Langmuir, 8, 722 (1992).

    Article  CAS  Google Scholar 

  29. D. Garfinkel, J. Am. Chem. Soc., 80, 3827 (1958).

    Article  CAS  Google Scholar 

  30. D. Hoebbel and W. Weiker, Z. Anorg. Allg. Chem., 384, 43 (1971).

    Article  CAS  Google Scholar 

  31. E. J. J. Groenen, A. G. T. G. Korbeek, M. Mackay, and O. Sudmeijer, Zeolites, 6, 403 (1986).

    Article  CAS  Google Scholar 

  32. J. M. Thomas and K. I. Zamarev, Perspectives in Catalysis, Blackwell, Oxford (1992).

    Google Scholar 

  33. J. K. Kochi, Organometallic Mechanisms and Catalysis, Academic Press, NY (1978).

    Google Scholar 

  34. K. Srinivasan, P. Michaud and J. K. Kochi, J. Amer. Chem. Soc., 108, 2309 (1986);

    Article  CAS  Google Scholar 

  35. B. Muenier, E. Guilnet, M. DeCarvalho, and R. Poliblanc, J. Am. Chem. Soc., 106, 6668 (1984).

    Article  Google Scholar 

  36. C. Bowers and P.K. Dutta, J. Catal., 122, 271 (1990).

    Article  CAS  Google Scholar 

  37. N. HerronInorg. Chem., 25, 4714 (1986).

    Article  CAS  Google Scholar 

  38. S. Imamura and J. H. Lunsford, Langmuir, 1, 326 (1985).

    Article  CAS  Google Scholar 

  39. G. Meyer, D. Worhle, M. Mohl, and G. Schulz-Ekloff, Zeolites, 4, 30 (1984).

    Article  CAS  Google Scholar 

  40. P. K. Dutta and C. Bowers, Langmuir, 7, 937 (1991).

    Article  CAS  Google Scholar 

  41. T. Shibahara and M. Mari, Bull. Chem. Soc. Jpn., 51, 1374 (1978).

    Article  CAS  Google Scholar 

  42. K. Nakamoto, Y. Nanaka, T. Ishiguro, M. W. Urbana, M. Suzuki, M. Kozuka, Y. Nishida, and S. Kida, J. Am. Chem. Soc., 104, 3386 (1982).

    Article  CAS  Google Scholar 

  43. R. J. Taylor, R. S. Drago, and J. E. George, J. Am. Chem. Soc., 111, 6610 (1989).

    Article  CAS  Google Scholar 

  44. V. N. Parmev and K. I. Zamarev, in Photocatalysis-Fundamentals and Applications, N. Serpone and E. Pelizzetti (Eds.), John Wiley, NY, p 656 (1989).

    Google Scholar 

  45. K. Kalyansundaram, Photochemistry in Microheterogeneous Systems, Academic Press, NY (1987).

    Google Scholar 

  46. Energy Conversion by Plants and Bacteria, (Ed) Govindjee, Academic Press, NY (1982).

    Google Scholar 

  47. J. Olensted III and T. J. Meyer, J. Phys. Chem., 91, 1649 (1987);

    Article  Google Scholar 

  48. K. Mandal and M. Z. Hoffman, J. Phys. Chem., 88, 5632 (1984);

    Article  CAS  Google Scholar 

  49. M. Z. Hoffman, J. Phys. Chem., 92, 3458 (1988);

    Article  CAS  Google Scholar 

  50. C. Chiorleoli, M. T. Indelli, M. A. R. Scandola, and F. Scandola, J. Phys. Chem., 92, 156 (1988).

    Article  Google Scholar 

  51. K. Kalyanasundaram, M. Gratzel, and E. Pelizzeti, Coord. Chem. Rev., 69, 57 (1986);

    Article  Google Scholar 

  52. J. M. Lehn, J. P. Sauvage, and R. Ziessel, Nouv. J. Chim., 3, 423 (1979);

    CAS  Google Scholar 

  53. P. K. Ghosh, B. S. Brunschwig, M. Chou, C. Creutz, and N. Sutin, J. Am. Chem. Soc., 106, 4772 (1984).

    Article  CAS  Google Scholar 

  54. G. Neshvad and M. Z. Hoffman, J. Phys. Chem., 93, 2445 (1989).

    Article  CAS  Google Scholar 

  55. W. H. Quyale and J. H. Lunsford, Inorg. Chem., 21, 97 (1982).

    Article  Google Scholar 

  56. J. A. Incavo and P. K. Dutta, J. Phys. Chem., 94, 3075 (1990).

    Article  CAS  Google Scholar 

  57. K. Maruszewski, D. P. Stroll-men, K. Handrich, and J. R. Kincaid, Inorg. Chem., 30, 4579 (1991).

    Article  CAS  Google Scholar 

  58. W. Turbeville, D. S. Robins, and P. K. Dutta, J. Phys. Chem., 96, 5024 (1992).

    Article  CAS  Google Scholar 

  59. E. S. Brigham, P. T. Snowden, Y. I. Kim, and T. E. Mallouk, J. Phys. Chem., 97, 8650 (1993).

    Article  CAS  Google Scholar 

  60. L. A. Summers, The Bipyridinium Herbicides, Academic Press, NY (1980).

    Google Scholar 

  61. P. K. Dutta and W. Turbeville, J. Phys. Chem., 96, 9410 (1992).

    Article  CAS  Google Scholar 

  62. M. Forster, R. B. Girling, and R. E. Hester, J. Raman Spectrosc., 12, 36 (1982).

    Article  CAS  Google Scholar 

  63. M. Borja and P. K. Dutta, Nature, 362, 43 (1993).

    Article  CAS  Google Scholar 

  64. I. Willner, A. Ayalon, and M. Rabinovitz, Nouv. J. Chem., 14, 685 (1990).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dutta, P.K. (1995). Zeolite Guest-Host Interactions: Implications in Formation, Catalysis, and Photochemistry. In: Herron, N., Corbin, D.R. (eds) Inclusion Chemistry with Zeolites: Nanoscale Materials by Design. Topics in Inclusion Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0119-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0119-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4057-0

  • Online ISBN: 978-94-011-0119-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics