Skip to main content

Alkali-Metal Clusters as Prototypes for Electron Solvation in Zeolites

  • Chapter
Inclusion Chemistry with Zeolites: Nanoscale Materials by Design

Part of the book series: Topics in Inclusion Science ((TISC,volume 6))

  • 270 Accesses

Abstract

In this section we describe, in some detail, work conducted on alkali-metal clusters in zeolites. Almost without exception, the clusters that we will discuss cannot exist in the gas-phase. As we shall demonstrate, the role of the zeolite is to provide an electrostatic containment field which gives rise to certain ionic sites within the zeolite Alkali-metal ions which, of course, play the role of counter-ion in the aluminosilicate zeolites, only take on the character of a cluster through introduction of an alkali atom or electron to the zeolite. Under these conditions, the electron (either the valence electron of the alkali atom or the introduced electron) is solvated by the electron trap afforded by these counter-ions. The ions relax around the electron and the result is an alkali-metal cluster. The concept is more than merely notional, since many of the physical properties (EPR and absorption cross-section) of the associated electron can be explained in terms of an alkali-metal cluster. Further, circumstantial evidence that the valence electron of an introduced alkali-atom is auto-ionized comes from the fact that XRD reveals that the nucleus takes up one of the ionic sites in the zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. T. Bolwijn, D. J. Schipper, and C. Z. van Doom, J. Appl. Phys., 43, 132 (1972).

    Article  CAS  Google Scholar 

  2. P. H. Kasai, J. Chem. Phys.,43, 3322 (1965).

    Article  CAS  Google Scholar 

  3. K. K. Iu, X. Liu and J. K. Thomas, J. Phys. Chem., 97, 8165 (1993).

    Article  CAS  Google Scholar 

  4. P. A. Anderson, D. Barr, and P. P. Edwards, Angew. Chem. Int. Ed. Engl., 30, 1501 (1991);

    Article  Google Scholar 

  5. P. A. Anderson and P. P. Edwards, J. Chem. Soc., Chem. Commun., 915 (1991);

    Google Scholar 

  6. P. A. Anderson, R. J. Dancer, and P. P. Edwards, J. Chem. Soc., Chem. Commun., 914 (1991).

    Google Scholar 

  7. X. Liu and J. K. Thomas, Langmuir, 8, 1750 (1992).

    Article  CAS  Google Scholar 

  8. R. M. Barrer and J. F. Cole, J. Phys.Chem. Solids,29, 1755 (1968).

    Article  CAS  Google Scholar 

  9. V. I. Srdanov, K. Haug, H. Metiu, and G.D. Stucky, J. Phys. Chem., 96, 9039 (1992).

    Article  CAS  Google Scholar 

  10. J. B. A. F. Smeulders, M. A. Hefni, A. A. K. Klassen, E. de Boer, U. Westphal, and G. Geismar, Zeolites, 7, 347 (1987)

    Article  CAS  Google Scholar 

  11. G. D. Stucky, L. lion, T. Morrison, G. Shenoy, S. Suib, and R. P. Zerger, J. Mol. Catal., 27, 71–80 (1980); J. Chem. Phys., 80, 2203 (1984).

    Google Scholar 

  12. T. L. Barr, L. M. Chen, M. Mohsenian, and M. A. Lishka, J. Am. Chem. Soc., 110, 7962 (1988).

    Article  CAS  Google Scholar 

  13. X. Liu, K. K. Iu, and J. K. Thomas, Chem. Phys. Lett., 224, 31 (1994).

    Article  CAS  Google Scholar 

  14. J. A. Rabo, C. L. Angell, P. H. Kasai and V. Schomaker, Discuss. Faraday Soc., 41, 328 (1966)

    Article  Google Scholar 

  15. P. P. Edwards, M. R. Harrison, J. Klinowski, S. Ramdas, J. M. Thomas, D. C. Johnson, and C. J. Page, J. Chem. Soc., Chem. Commun., 982 (1984)

    Google Scholar 

  16. J. Dye, J. Phys. Chem., 84, 1084 (1980)

    Article  CAS  Google Scholar 

  17. P. A. Anderson and P. P. Edwards, J. Am. Chem. Soc., 114, 10608 (1992).

    Article  CAS  Google Scholar 

  18. T. Sun and K. Seff, J. Phys. Chem., 98, 10156 (1994).

    Article  CAS  Google Scholar 

  19. P. A. Anderson, R. J. Singer, and P. P. Edwards, J. Chem. Soc., Chem. Commun., 914 (1994).

    Google Scholar 

  20. A. Stein, P. M. Macdonald, G. A. Ozin, and G. D. Stucky, J. Phys. Chem., 94, 6943 (1990).

    Article  CAS  Google Scholar 

  21. R. Jelinek, B. F. Chmelka, A. Stein, and G. A. Ozin, J. Phys. Chem., 96, 6744–6752 (1992)

    Article  CAS  Google Scholar 

  22. S. H. Song, Y. Kim, and K. Seff J. Am Chem. Soc., 97, 10139 (1993);

    Google Scholar 

  23. N. H. Heo and K. Seff, J. Am. Chem. Soc., 109, 7986 (1987); J. Chem. Soc., Chem. Commun., 1225 (1987); Zeolites, 12, 819 (1992);

    Google Scholar 

  24. N. H. Heo, C. Dejsupa, and K. Seff, J. Phys. Chem., 91, 3943 (1987); Zeolites, 9, 146 (1989).

    Google Scholar 

  25. S. H. Song, U. S. Kim, Y. Kim, and K. Seff, J. Phys. Chem., 96, 10937 (1992).

    Article  CAS  Google Scholar 

  26. S. H. Song, Y. Kim, and K. Seff, J. Phys. Chem., 95, 9919 (1991).

    Article  CAS  Google Scholar 

  27. K. K. Iu and J. K. Thomas, J. Phys. Chem., 95, 506 (1991); Colloids Surf., 63, 39 (1992).

    Google Scholar 

  28. K. B. Yoon and J. K. Kochi, J. Chem. Soc., Chem. Commun., 510 (1988).

    Google Scholar 

  29. L. R. M. Matens, P. J. Grobet, and P. A. Jacobs, Nature, 315, 568 (1985).

    Article  Google Scholar 

  30. B. Xu, X. Chen, and L. Kevan, J. Chem. Soc., Faraday Trans., 87, 3157 (1991).

    Article  CAS  Google Scholar 

  31. K. Haug, V. I. Srdanov, G. D. Stucky, and H. Metiu, J. Chem. Phys., 96, 3495 (1992).

    Article  CAS  Google Scholar 

  32. N. P. Blake, V. Srdanov, G. D. Stucky, and H. Metiu, J. Phys. Chem., in press.

    Google Scholar 

  33. P. Sen, C. N. R. Rao, and J. M. Thomas, J. Mol. Struct., 146, 1711 (1986).

    Google Scholar 

  34. R. D. Shannon, Acta Crystallogr., A32, 751 (1976).

    CAS  Google Scholar 

  35. N. P. Blake and H. Metiu, J. Chem. Phys., submitted.

    Google Scholar 

  36. N. P. Blake and H. Metiu, J. Phys. Chem, to be submitted.

    Google Scholar 

  37. N. P. Blake, V. I. Srdanov, G. D. Stucky, and H. Metiu, Phys. Rev. Lett., to be submitted.

    Google Scholar 

  38. A. Monnier, G. D. Stucky, and H. Metiu, J. Chem. Phys., 100, 6944 (1994).

    Article  CAS  Google Scholar 

  39. V. I. Srdanoy and G. D. Stucky, in preparation.

    Google Scholar 

  40. P. P. Edwards, L. J. Woodhall, P. A. Anderson, A. R. Armstrong, and M. Slaski, Chem. Revs., 305 (1993).

    Google Scholar 

  41. P. P. Edwards and M. J. Sienko, J. Am. Chem. Soc., 103, 2697 (1981).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Blake, N.P., Stucky, G.D. (1995). Alkali-Metal Clusters as Prototypes for Electron Solvation in Zeolites. In: Herron, N., Corbin, D.R. (eds) Inclusion Chemistry with Zeolites: Nanoscale Materials by Design. Topics in Inclusion Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0119-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0119-6_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4057-0

  • Online ISBN: 978-94-011-0119-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics