Skip to main content

Probing Intrazeolite Space

  • Chapter

Part of the book series: Topics in Inclusion Science ((TISC,volume 6))

Abstract

Molecular sieves are crystalline materials with open framework structures. Of the almost two billion pounds of molecular sieves produced in 1990, 1.4 billion pounds were used in detergents, 160 million pounds as catalysts, and about 70 million pounds as adsorbents or desiccants [1]. Zeolites, composed of aluminosilicates, represent a large fraction of known molecular sieves. The primary building blocks of zeolites are [SiO4 ]4 and [A1O4]5 tetrahedra which are linked by their corners to form channels and cages or cavities of discrete size The pore openings to these channels and cages generally range from about 3 to 20 Å. As a result of the difference in charge between the [SiO4 ]4 and [A1O4]5 tetrahedra, the total framework charge of an aluminum-containing molecular sieve is negative and hence must be balanced by cations, typically protons, alkali, or alkaline earth metal ions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Smart, Chemicals Economics Handbook, SRI International, (1992).

    Google Scholar 

  2. R. Szostak, Handbook of Molecular Sieves, Van Nostrand Reinhold, New York (1992).

    Google Scholar 

  3. R. M. Dessau, J. L. Schlenker, and J. B. Higgins, Zeolites, 10, 522 (1990).

    Article  CAS  Google Scholar 

  4. J. W. Richardson Jr. and E. T. C. Vogt, Zeolites, 12, 13 (1992).

    Article  CAS  Google Scholar 

  5. L. B. McCusker, Ch. Baerlocher, E. Jahn, and M. Buelow, Zeolites, 11, 308 (1991).

    Article  CAS  Google Scholar 

  6. M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, and C. Crowder, Nature 331, 698 (1988).

    Article  CAS  Google Scholar 

  7. M. Estermann, L. B. McCusker, Ch. Baerlocher, A. Merrouche, and H. Kessler, Nature, 352, 320 (1991).

    Article  CAS  Google Scholar 

  8. F. Liebau, Structural Chemistry of Silicates, Springer-Verlag, Würzburg, p 136 (1985).

    Book  Google Scholar 

  9. D. W. Breck, Zeolite Molecular Sieves, J. Wiley and Sons, New York, pp 607, 633–41 (1974).

    Google Scholar 

  10. R. Szostak, Molecular Sieves: Principles of Synthesis and Characterization, Van Nostrand Reinhold, New York (1989).

    Google Scholar 

  11. H. van Bekkum, E. M. Flanagen, and J. C. Jansen (Eds.), Introduction to Zeolite Science and Practice, Elsevier, Amsterdam (1991). (Stud. Surf. Sci. Catal., 58 (1991)).

    Google Scholar 

  12. J. E. Huheey, Inorganic Chemistry, 2nd Edition, Harper and Row, New York, p 232 (1978).

    Google Scholar 

  13. W. M. Meier and D. H. Olson, Atlas of Zeolite Structure Types,Third Edition, Butterworth-Heinemann, Boston, p 9 (1992).

    Google Scholar 

  14. S. G. Hill and D. Seddon, Zeolites, 5,173 (1985).

    Article  CAS  Google Scholar 

  15. W. W. Kaeding, C. Chu, L. B. Young, B. Weinstein, and S. A. Butter, J. Catal. 67,159 (1981).

    Article  CAS  Google Scholar 

  16. J. Koresh and A. Soffer, J. Chem. Soc., Faraday I, 76, 2457 (1980).

    Article  CAS  Google Scholar 

  17. J. Koresh and A. Soffer, J. Chem. Soc., Faraday I, 76, 2472 (1980).

    Article  CAS  Google Scholar 

  18. R. M. Moore and J. R. Katzer, A. I. Ch. E. Journal, 18, 816 (1972).

    Article  CAS  Google Scholar 

  19. Fisher Scientific Co., Cat. No. 12–824, U.S. Patent 2,308,402 (1940).

    Google Scholar 

  20. L. Gurvitsch, Russ. J. Phys. Chem., 47, 805 (1915).

    Google Scholar 

  21. These references should provide a reasonable overview of sorption: See [5], Chap. 8, “Adsorption by Dehydrated Zeolite Crystals”, p 593ff.

    Google Scholar 

  22. S. J. Gregg and K. S. W. Sing, Chap. 4, Adsorption of Gases on Porous Solids, Surface & Colloid Science, 19, 231 (1976).

    Google Scholar 

  23. J. Koresh, J. Colloid Interface Science,88, 398 (1982).

    Article  CAS  Google Scholar 

  24. J. L. Soto, P. W. Fisher, A. J. Glessner, and A. L. Myers, J. Chem. Soc., Faraday I, 77, 157 (1981).

    Article  CAS  Google Scholar 

  25. A. P. Vavlitis, D. M. Ruthven, and K. F. Loughlin, J. Colloid Interface Science, 84, 526 (1981).

    Article  CAS  Google Scholar 

  26. “Sorption and Diffusion of Gaseous Hydrocarbons in Synthetic Mordenite”, C. N. Satterfield and A. J. Frabetti Jr., A. I. Ch. E. Journal, 13, 731 (1967).

    Article  CAS  Google Scholar 

  27. “Desorption and Counterdiffusion Behavior of Benzene and Cumene in HMordenite”, C. N. Satterfield, J. R. Katzer, and W. R. Vieth, Md. Eng. Chem. Fundam., 10, 478 (1971).

    Article  CAS  Google Scholar 

  28. “Restricted Diffusion in Liquids within Fine Pores”, C. N. Satterfield, C. K. Colton, and W. H. Pitcher, A. I. Ch. E. Journal, 19, 628 (1973).

    Article  CAS  Google Scholar 

  29. “Sorption and Diffusion Properties of Natural Zeolites”, Y. H. Ma and T. Y. Lee, in Natural Zeolites, L. B. Sand and F. A. Mumpton (Eds), Pergamon Press, Elmsford, New York, p 373 (1976).

    Google Scholar 

  30. “Interpretation and Correlation of Zeolite Diffusivities Obtained from NMR and Sorption Experiments”, J. Karger and J. Caro, J. Chem. Soc.,Faraday I, 73, 1363 (1977).

    Article  Google Scholar 

  31. “Mass Transport in Heterogenenous Catalysts”, J. C. Vedrine, in Mass Transport in Solids, F. Beniere and R. A. Catlow (Eds), Plenum, New York, Chap. 20 (1981).

    Google Scholar 

  32. “Kinetics of Nonisothermal Sorption: Systems with Bed Diffusion Control”, D. M. Ruthven and L. -K. Lee, A. I. Ch. E. Journal, 27, 654 (1981).

    Article  CAS  Google Scholar 

  33. “Diffusion in Zeolites”, J. Karger and D. M. Ruthven, J. Chem. Soc., Faraday I, 77, 1485 (1981).

    Article  Google Scholar 

  34. “Diffusion-Controlled Adsorption Kinetics. General Solution and Some Applications”, K. J. Mysels, J. Phys. Chem., 86, 4648 (1982).

    Article  CAS  Google Scholar 

  35. “Interpretation of Sorption and Diffusion Data in Porous Solids”, R. Aris, Ind. Eng. Chem. Fundam., 22, 150 (1983).

    Article  CAS  Google Scholar 

  36. “Adsorption and Diffusion of Gases in Zeolites”, L. V. C. Rees, Chemistry and Industry (London), 252 (1984).

    Google Scholar 

  37. “Nonisothermal Sorption Kinetics in Porous Adsorbents”, R. Haul and H. Stremming, J. Colloid Interface Science, 97, 348 (1984).

    Article  CAS  Google Scholar 

  38. R. M. Moore and J. R. Katzer, A. I. Ch. E. Journal, 18, 816 (1972).

    Article  CAS  Google Scholar 

  39. L. Abrams and D. R. Corbin, J. Catal., 127, 9 (1991).

    Article  CAS  Google Scholar 

  40. L. Abrams, M. Keane, and G. C. Sonnichsen, J. Catal., 115, 361 (1989).

    Article  Google Scholar 

  41. J. B. Parise, L. Abrams, T. E. Gier, D. R. Corbin, J. D. Jorgensen, and E. Prince, J. Phys. Chem., 88, 2303 (1984).

    Article  CAS  Google Scholar 

  42. L. Abrams, D. R. Corbin, and M. Keane, J. Catal., 126, 610 (1990).

    Article  CAS  Google Scholar 

  43. D. H. Olson, G. T. Kokotailo, S. L. Lawton, and W. M. Meier, J. Phys. Chem., 85, 2238 (1981).

    Article  CAS  Google Scholar 

  44. E. G. Derouane and Z. Gabelica, J. Catal., 65, 486 (1980).

    Article  CAS  Google Scholar 

  45. E. M. Flanigen, J. M. Bennett, R. W. Grose, J. P. Cohen, R. L. Patton, R. M. Kirchner, and J. V. Smith, Nature, 271, 512 (1978).

    Article  CAS  Google Scholar 

  46. A. Auroux, H. Dexpert, C. LeClercq, and J. Vedrine, Appl. Catal., 6, 95 (1983).

    Article  CAS  Google Scholar 

  47. C. G. Pope, J. Catal., 72, 174 (1981).

    Article  CAS  Google Scholar 

  48. H.-J. Doelle, J. Heering, L. Rickert, and L. Marosi, J. Catal., 71, 27 (1981).

    Article  CAS  Google Scholar 

  49. R. LeVanMao, O. Pilati, A. Marzi, G. Leofanti, A. Villa, and V. Ragaini, React. Kinet. Catal. Lett., 15, 293 (1980).

    Article  CAS  Google Scholar 

  50. H. Nakamoto and H. Takahashi, Zeolites, 2, 67 (1982).

    Article  CAS  Google Scholar 

  51. A comparison of the relative diffusion coefficients was made by using a modified form of the Crank equation: (Qt-Qo)/(Qeq-Qo) = c*(Dt)1/2, {[5] p. 673} where Qt is the amount sorbed at time t, Qeq is the equilibrium amount, c is a constant depending on the geometry of the crystals, and D is the diffusion coefficient. For the case where Qo is zero, the ratio of Qt to Qeq is the occupancy of the crystals. Rearranging the equation yields: D = (k/t)*(Qt/Qeq)2, which is valid only for short times.

    Google Scholar 

  52. Z. Gabelica, J. B. Nagy, and G. Debras, J. Catal., 84, 256 (1983).

    Article  CAS  Google Scholar 

  53. E. G. Derouane, S. Detremmerie, Z. Gabelica, and N. Blom, Appl. Catal., 1, 201 (1981).

    Article  CAS  Google Scholar 

  54. P. A. Jacobs, E. G. Derouane, and J. Weitkamp, J. Chem. Soc., Chem. Commun., 592 (1981).

    Google Scholar 

  55. S. M. Csicsery, Zeolites, 4, 202 (1984).

    Article  CAS  Google Scholar 

  56. V. N. Ramannikov, A. S. Loktev, A. N. Spektor, G. L. Bitman, K. G. Ione, P. S. Chekrii, Neftekhimiya, 31, 409–15 (1991).

    CAS  Google Scholar 

  57. D. R. Corbin, L. Abrams, and C. Bonifaz, J. Catal., 115, 420 (1989).

    Article  CAS  Google Scholar 

  58. E. G. Derouane, P. Dejaifve, Z. Gabelica, and J. Vedrine, J. Chem. Soc., Faraday Disc., 72, 331 (1981).

    Article  Google Scholar 

  59. E. G. Derouane, J. Catal., 72, 177 (1981).

    Article  CAS  Google Scholar 

  60. D. R. Corbin, W. C. Seidel, L. Abrams, N. Herron, G. D. Stucky, and C. A. Tolman, Inorg. Chem., 24, 1800 (1985).

    Article  CAS  Google Scholar 

  61. N. J. Turro, C. -C. Cheng, L. Abrams, and D. R. Corbin, J. Am. Chem. Soc., 109, 2449 (1987).

    Article  CAS  Google Scholar 

  62. N. J. Turro, N. Han, X-G. Lei, J. R. Fehlner, and L. Abrams, J. Am. Chem. Soc., (submitted).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Abrams, L., Corbin, D.R. (1995). Probing Intrazeolite Space. In: Herron, N., Corbin, D.R. (eds) Inclusion Chemistry with Zeolites: Nanoscale Materials by Design. Topics in Inclusion Science, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0119-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0119-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4057-0

  • Online ISBN: 978-94-011-0119-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics