Skip to main content

Potassium Channels in The Regulation of Vascular Smooth Muscle Tone

  • Chapter
Pharmacological Control of Calcium and Potassium Homeostasis

Part of the book series: Medical Science Symposia Series ((MSSS,volume 9))

Abstract

Blood vessel tone is the complex resultant of the effects exerted by blood pressure and flow, the presence of endogenous constrictors and relaxants and the inherent properties of the constituent vascular smooth muscle cells [1]. Potassium (K) channels affect tone by modifying the prevailing level of membrane potential with consequent effects on the gating of voltage-sensitive calcium (Ca) channels. With the K equilibrium potential (EK) at -85mV, K channel opening produces hyperpolarization and relaxation. Conversely, the closure of open K channels depolarizes the membrane and primes the cell for contraction [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Longmore J, Weston AR The role of K+ channels in the modulation of vascular smooth muscle tone. In: Cook NS, editor. Potassium channels: Structure classification, function and therapeutic potential. Chichester: Ellis Horwood, 1990:259–278.

    Google Scholar 

  2. Edwards G, Duty S, Trezise DJ, Weston AH. Effects of potassium channel modulators on the cardiovascular system. In: Weston AH, Hamilton TC, editors. Potassium channel modulators. Oxford: Blackwell Scientific, 1992: 69–421.

    Google Scholar 

  3. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 1993;33:597–637.

    Article  PubMed  CAS  Google Scholar 

  4. Edwards G, Weston AH. Effect of potassium channel modulating drugs on isolated smooth muscle. In: Szekeres L, Papp JG, editors. Handbook of experimental pharmacology: Volume 111, Smooth muscle. Heidelberg: Springer Verlag, 1994:469–531.

    Google Scholar 

  5. Bolton TB, Beech DJ. Smooth muscle potassium channels: Their electrophysiology and function. In: Weston AH, Hamilton TC, editors. Potassium channel modulators. Oxford: Blackwell Scientific, 1992:144–180.

    Google Scholar 

  6. Southerton JS, Weston AH, Bray KM, Newgreen DT, Taylor SG. The potassium channel opening action of pinacidil: Studies using biochemical, ion flux and microelectrode techniques. Naunyn Schmiedeberg’s Arch Pharmacol 1988;338:10318.

    Article  Google Scholar 

  7. Okabe K, Kitamura K, Kuriyama H. Features of 4-aminopyridine sensitive outward current observed in single smooth muscle cells from the rabbit pulmonary artery. Pflügers Arch 1987;409:561–568.

    Article  PubMed  CAS  Google Scholar 

  8. Beech DT, Bolton TB. Two components of a potassium current activated by depolarisation of single smooth muscle cells from the rabbit portal vein. J Physiol 1989;418:293–309.

    PubMed  CAS  Google Scholar 

  9. Noack Th, Deitmer P, Golenhofen K. Features of a calcium independent, caffeine sensitive outward current in single smooth muscle cells from guinea pig portal vein. Pflügers Arch 1990;416:467–469.

    Article  PubMed  CAS  Google Scholar 

  10. Noack Th, Edwards G, Deitmer P, et al. The involvement of potassium channels in the action of ciclazindol in rat portal vein. Br J Pharmacol 1992;106:17–24.

    Article  PubMed  CAS  Google Scholar 

  11. Hara Y, Kitamura K, Kuryama H. Actions of 4-aminopyridine on vascular smooth muscle tissues of the guinea-pig. BrJPharmacol 1980;68:99–106.

    Article  PubMed  CAS  Google Scholar 

  12. Cook NS. Effect of some potassium channel blockers on contractile responses of the rabbit aorta. J Cardiovasc Pharmacol 1989;13:299–306.

    Article  PubMed  CAS  Google Scholar 

  13. Beech DJ, Bolton TB. A voltage-dependent outward current with fast kinetics in single smooth muscle cells isolated from the rabbit portal vein. J Physiol 1989;412:397–414.

    PubMed  CAS  Google Scholar 

  14. Rettig J, Heinemann SH, Wunder F, et al. Inactivation properties of voltage-gated K’ channels altered by presence of 0-subunits. Nature 1994;369:289–294.

    Article  PubMed  CAS  Google Scholar 

  15. Edwards FR, Hirst GDS. Inward rectification in submucosal arterioles of guinea-pigileum. J Physiol 1988;404:437–454.

    PubMed  CAS  Google Scholar 

  16. Edwards FR, Hirst GDS, Silverberg GD. Inward rectification in rat cerebral arterioles: involvement of potassium ions in autoregulation. J Physiol 1988;404:455466.

    PubMed  CAS  Google Scholar 

  17. Quayle JM, McCarron JG, Brayden JE, Nelson MT. Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries. Am J Physiol 1993;265: C1363–C1370.

    PubMed  CAS  Google Scholar 

  18. Ho K, Nichols CG, Lederer WJ, et al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 1993;362:31–38.

    Article  PubMed  CAS  Google Scholar 

  19. Kubo Y, Baldwin TJ, Jan YN, Jan LY. Primary structure and functional expression of a novel inward rectifier potassium channel. Nature 1993;362:127–133.

    Article  PubMed  CAS  Google Scholar 

  20. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature 1993;364: 802–806.

    Article  PubMed  CAS  Google Scholar 

  21. Cook NS, Quast U. Potassium channel pharmacology. In: Cook NS, editor. Potassium channels: Structure classification, function and therapeutic potential. Chichester: Ellis Horwood, 1990: 181–255.

    Google Scholar 

  22. Samaha FF, Heinemann FW, Ince C, Fleming J, Balaban RS. ATP-sensitive potassium channel is essential to maintain basal coronary tonein vivo.Am J Physiol 1992;262: C1220–C1227.

    PubMed  CAS  Google Scholar 

  23. Daut J, Maier-Rudolph W, Von Beckerath N, Mehrke G, Günther K, GoedelMeinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990;247:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  24. Newgreen DT, Bray KM, McHarg AD, et al. The action of diazoxide and minoxidil sulphate on rat blood vessels: A comparison with cromakalim. Br J Pharmacol 1990;100 605–613.

    Article  PubMed  CAS  Google Scholar 

  25. Masuzawa K, Asano M, Matsuda T, Imaizumi Y, Watanabe M. Possible involvement of ATP-sensitive K+channels in the relaxant response of dog middle cerebral artery to cromakalim. J Pharmacol Exp Ther 1990;255:818–825.

    PubMed  CAS  Google Scholar 

  26. McPherson GA, Angus JA. Evidence that acetylcholine-mediated hyperpolarisation of the rat small mesenteric artery does not involve the K+-channel opened by cromakalim. Br J Pharmacol 1991;103:1184–1190.

    Article  PubMed  CAS  Google Scholar 

  27. Ashford MLJ, Bond CT, Blair TA, Adelman W. Cloning and functional expression of a rat heart KAchannel. Nature 1994;370:456–459.

    Article  PubMed  CAS  Google Scholar 

  28. Winquist RJ, Heaney LA, Wallace AA, et al. Glyburide blocks the relaxation response to BRL34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. J Pharmacol Exp Ther 1989;248:149–156.

    PubMed  CAS  Google Scholar 

  29. Suarez-Kurtz G, Garcia ML, Kaczorowski GJ. Effects of charybdotoxin and iberiotoxin on the spontaneous motility and tonus of different guinea-pig smooth muscle tissues. J Pharmacol Exp Ther 1991;259:439–443.

    PubMed  CAS  Google Scholar 

  30. Edwards G, Niederste-Hollenberg A, Schneider J, Noack Th, Weston AH. Ion channel modulation by NS1619, the putative BK,, channel opener, in vascular smooth muscle. Br J Pharmacol 1994;113:1538–1547.

    Article  PubMed  CAS  Google Scholar 

  31. Knaus HG, McManus OB, Lee SH, et al. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance, calcium-activated potassium channels. Biochemistry 1994;33:5819–5828.

    Article  PubMed  CAS  Google Scholar 

  32. Olesen SP, Munch E, Moldt P, Drejer J. Selective activation of Ca2+-dependent K+- channels by novel benzimidazolone. Eur J Pharmacol 1994;251;53–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Edwards, G., Weston, A.H. (1995). Potassium Channels in The Regulation of Vascular Smooth Muscle Tone. In: Godfraind, T., Mancia, G., Abbracchio, M.P., Aguilar-Bryan, L., Govoni, S. (eds) Pharmacological Control of Calcium and Potassium Homeostasis. Medical Science Symposia Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0117-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0117-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4056-3

  • Online ISBN: 978-94-011-0117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics