Skip to main content

Endothelium-Dependent Hyperpolarization and Potassium Channels

  • Chapter
  • 60 Accesses

Part of the book series: Medical Science Symposia Series ((MSSS,volume 9))

Abstract

In response to various neurohumoral mediators and physical stimuli, the endothelium elicits relaxations or contractions of the underlying vascular smooth muscle. Endothelium-dependent relaxations can be mediated by the release of the endothelium-derived nitric oxide and prostacyclin [1-2]. In addition, endothelial cells release a yet unidentified endothelium-derived hyperpolarizing factor (EDHF), which causes membrane hyperpolarization by opening potassium channels in vascular smooth muscle [3-4]. However, the possibility that EDHF may contribute to endothelium-dependent hyperpolarization and the mechanism underlying this response is the subject of some controversy. Since both NO and some synthesized prostanoids [5] can cause membrane hyperpolarization under certain conditions, depending on the tissues and/or the species studied, the electrophysiological changes attributed to EDHF have to be distinguished from those of either NO or prostanoids by demonstrating its occurrence during combined inhibition of NO synthase and cyclooxygenase [6]. This brief review focuses on endothelium-dependent hyperpolarizations which cannot be attributed to the release of nitric oxide or prostanoids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989;3:2007–18.

    PubMed  CAS  Google Scholar 

  2. Lüscher TF, Vanhoutte PM. The endothelium: Modulator of cardiovascular function. Boca Raton, FL: CRC Press, 1990:1–228.

    Google Scholar 

  3. Vanhoutte PM. Other endothelium-derived factors. Circulation 1993;Supp1.V:V9–17.

    Google Scholar 

  4. Nagao T, Vanhoutte PM. Endothelium-derived hyperpolarizing factor and endothelium-dependent relaxations. Am J Respir Cell Mol Biol 1993;8(1):1–6.

    PubMed  CAS  Google Scholar 

  5. Chen G, Suzuki H. Some electrical properties of the endothelium-dependent hyperpolarization recorded from rat arterial smooth muscle cells. J Physiol (Lond) 1989;410:91–106.

    CAS  Google Scholar 

  6. Nagao T, Vanhoutte PM. Hyperpolarization contributes to endothelium-dependent relaxations to acetylcholine in femoral veins of rats. Am J Physiol 1991;261(4): H1034–37.

    PubMed  CAS  Google Scholar 

  7. Furchgott RF, Zawadzki JV. The obligatory role of the endothelial cells in relaxation of arterial smooth muscle by acetylcholine. Nature 1980;288:373–76.

    Article  PubMed  CAS  Google Scholar 

  8. Kitamura K, Kuriyama H. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea pig. J Physiol (Lond) 1979;293:119–133.

    CAS  Google Scholar 

  9. Kuriyama H, Suzuki H. The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br J Pharmacol 1978;64:493–501.

    Article  PubMed  CAS  Google Scholar 

  10. Bolton TB, Lang RJ, Takewaki T. Mechanism of action of noradrenaline and carbachol on smooth muscle of guinea-pig anterior mesenteric artery. J Physiol 1984;351:549–572.

    PubMed  CAS  Google Scholar 

  11. Beny JP, Brunet PC. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta. J Physiol (Lond) 1988;398:277–89.

    CAS  Google Scholar 

  12. Chen G, Suzuki H, Weston AH. Acetylcholine releases endothelium-derived hyperpolarizing factor and EDRF from rat blood vessels. Br J Pharmacol 1988; 95(4): 1165–74.

    Article  PubMed  CAS  Google Scholar 

  13. Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Br J Pharmacol 1988;93(3):515–24.

    Article  PubMed  Google Scholar 

  14. Huang AH, Busse R, Bassenge E. Endothelium-dependent hyperpolarization of arterial smooth muscle is not mediated by EDRF. Naunyn-Schmiedeberg’s Arch Pharmacol 1988;338:438–42.

    Article  CAS  Google Scholar 

  15. Nakashima M, Mombouli JV, Taylor AA, Vanhoutte PM. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. J Clin Invest ;92(6):2867–71.

    Google Scholar 

  16. Brunet PC, Beny JL. Substance P and bradykinin hyperpolarize pig coronary artery endothelial cells in primary culture. Blood Vessels 1989;26(4):228–34.

    PubMed  CAS  Google Scholar 

  17. Beny JL. Endothelial and smooth muscle cells hyperpolarized by bradykinin are not dye coupled. Am J Physiol 1990;258(27):H836–H841.

    PubMed  CAS  Google Scholar 

  18. Beny JL. Thimerosal hyperpolarizes arterial smooth muscles in an endothelium-dependent manner. Eur J Pharmacol 1990;185(2–3):235–38.

    Article  PubMed  CAS  Google Scholar 

  19. Davies PF, Olesen SP, Clapham DE, Morrel EM, Schoen FJ. Endothelial communication. Hypertension 1988;11: 563–72.

    Article  PubMed  CAS  Google Scholar 

  20. Beny JL, Pacicca C. Bidirectional electrical communication between smooth muscle and endothelial cells in the pig coronary artery. Am J Physiol 1994;266(4):H1465–72.

    Google Scholar 

  21. Kauser K, Stekiel WJ, Rubanyi G, Harder DR. Mechanism of action of EDRF on pressurized arteries: Effect on K+ conductance. Circ Res 1989;65(1):199–204.

    Article  PubMed  CAS  Google Scholar 

  22. Chen G, Yamamoto Y, Miwa K, Suzuki H. Hyperpolarization of arterial smooth muscle induced by endothelial humoral substances. Am J Physiol 1991;260(6): H1888–92.

    PubMed  CAS  Google Scholar 

  23. Akata T, Yoshitake JI, Nakashima M, Itoh T. Effects of protamine on vascular smooth muscle of rabbit mesenteric artery. Anesthesiology 1991;75:833–46.

    Article  PubMed  CAS  Google Scholar 

  24. Nakashima M, Akata T, Kuriyama H. Effects on the rabbit coronary artery of LP-805, a new type of releaser of endothelium-derived relaxing factor and a K+ channel opener. Circ Res 1992;71(4):859–69.

    Article  PubMed  CAS  Google Scholar 

  25. Chen G, Suzuki H. Calcium dependency of the endothelium-dependent hyper-polarization in smooth muscle cells of the carotid artery. J Physiol 1990; 421:52134.

    Google Scholar 

  26. Colden-Stanfield M, Schilling W, Ritchie A, Eskin SG, Navarro LT, Kunze DL. Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Cir Res 1987;61:632–40.

    Article  CAS  Google Scholar 

  27. Johns A, Lategan TW, Lodge NJ, Ryan US, Van Breemen C, Adams DJ. Calcium entry through receptor-operated calcium channels in bovine pulmonary artery endothelial cells. Tissue Cells 1987;19:733–45.

    Article  CAS  Google Scholar 

  28. Lambert TL, Kent RS, Whorton AR. Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells. J Biol Chem 1986; 261.15288–93.

    Google Scholar 

  29. Nagao T, Illiano S, Vanhoutte P M. Calmodulin antagonists inhibit endothelium-dependent hyperpolarization in the canine coronary artery. Br J Pharmacol 1992; 107:382–86.

    Article  PubMed  CAS  Google Scholar 

  30. Illiano S, Nagao T, Vanhoutte PM. Calmidazolium, a calmodulin inhibitor, inhibits endothelium-dependent relaxations resistant to nitro-L-arginine in the canine coronary artery. Br J Pharmacol 1992;107(2):387–92.

    Article  PubMed  CAS  Google Scholar 

  31. Bredt D, Snyder S H. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc Nati Acad Sci USA. 1990;87:682–85.

    Article  CAS  Google Scholar 

  32. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage-dependence of arterial smooth muscle tone. Am J Physiol 1990;259(28): C3–C18.

    PubMed  CAS  Google Scholar 

  33. Itoh T, Seki N, Suzuki S, Ito S, Kajikuri J, Kuriyama H. Membrane hyper-polarization inhibits agonist-induced synthesis of inositol 1,4,5-triphosphate in rabbit mesenteric artery. J Physiol Lond 1992;451:307–28.

    PubMed  CAS  Google Scholar 

  34. Brayden JE, Wellman GC. Endothelium-dependent dilation of feline cerebral arteries: Role of membrane potential and cyclic nucleotides. J Cereb Blood Flow Metab 1989;9(3):256–63.

    Article  PubMed  CAS  Google Scholar 

  35. Suzuki H. The electrogenic Na-K pump does not contribute to endothelium-dependent hyperpolarization in the rabbit ear artery. Eur J Pharmacol 1988;156(2): 295–97.

    Article  PubMed  CAS  Google Scholar 

  36. Chen G, Hashitani H, Suzuki H. Endothelium-dependent relaxation and hyperpolarization of canine coronary artery smooth muscles in relation to the electrogenic Na-K pump. Br J Pharmacol 1989;98(3):950–56.

    Article  PubMed  CAS  Google Scholar 

  37. Bray K, Quast U. Differences in the K+-channels opened by cromakalim, acetylcholine and substance P in rat aorta and porcine coronary artery. Br J Pharmacol 1991;102:585–94.

    Article  PubMed  CAS  Google Scholar 

  38. Nagao T, Vanhoutte PM. Hyperpolarization as a mechanism for endothelium-dependent relaxations in the porcine coronary artery. J Physiol Lond 1992;445: 35567.

    Google Scholar 

  39. Taylor SG, Southerton JS, Weston AH, Baker JRJ. Endothelium-dependent effects of acetylcholine in rat aorta: A comparison with sodium nitroprusside and cromakalim. Br J Pharmacol 1988;94:853–63.

    Article  PubMed  CAS  Google Scholar 

  40. Akata T, Nakashima M, Kodama K, Boyle WA, Takahashi S. Effects of volatile anesthetics on ACh-induced relaxation in the rabbit mesenteric resistance artery. Anesthesiology, in press.

    Google Scholar 

  41. Ito Y, Suzuki H, Kuriyama H. Effects of sodium nitroprusside on smooth muscle cells of rabbit pulmonary artery and portal vein. J Pharmacol Exp Ther 1978;70: 1022–31.

    Google Scholar 

  42. Ito Y, Kitamura K, Kuriyama H. Actions of nitroglycerine on the membrane and mechanical properties of smooth muscles of the coronary artery of the pig. Br J Pharmacol 1980;70:197–204.

    Article  PubMed  CAS  Google Scholar 

  43. Cheung DW, Mackay M. The effects of sodium nitroprusside and 8-bromo-cyclic GMP on electrical and mechanical activities of the rat tail artery. Br J Pharmacol 1985;86:117–124.

    Article  PubMed  CAS  Google Scholar 

  44. Tare M, Parkington HC, Coleman HA, Neild TO, Dusting W. Hyperpolarization and relaxation of arterial smooth muscle caused by nitric oxide derived from the endothelium. Nature 1990;346(6279):69–71.

    Article  PubMed  CAS  Google Scholar 

  45. Garland JG, McPherson GA. Evidence that nitric oxide does not mediate the hyperpolarization and relaxation to acetylcholine in the rat small mesenteric artery. Br J Pharmacol 1992;105(2):429–35.

    Article  PubMed  CAS  Google Scholar 

  46. Robertson BE, Shubert R, Hescheier J, Nelson MT. C-GMP dependent protein kinase activates Ca-activated K channels in cerebral artery smooth muscle cells. Am J Physiol 1993;265:C299–C303.

    PubMed  CAS  Google Scholar 

  47. Taniguchi J, Furukawa KI, Shigekawa M. MaxiK+channels are stimulated by cyclic monophosphate-dependent protein kinase in canine coronary artery smooth muscle cells. Pflügers Arch 1993;423:167–72.

    Article  PubMed  CAS  Google Scholar 

  48. Bolotina VM, Najibi S, Paracino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature 1994;368:850–53.

    Article  PubMed  CAS  Google Scholar 

  49. Nakashima M, Vanhoutte PM. Endothelin-1 and -3 cause endothelium-dependent hyperpolarization in the rat mesenteric artery. Am J Physiol 1993,265(6):H2137–41.

    PubMed  CAS  Google Scholar 

  50. Beny JL, Brunet PC. Neither nitric oxide nor nitroglycerin accounts for all the characteristics of endothelially mediated vasodilatation of pig coronary arteries. Blood Vessels 1988;25:308–11.

    PubMed  CAS  Google Scholar 

  51. Brayden JE. Membrane hyperpolarization is a mechanism of endothelium-dependent cerebral vasodilation. Am J Physiol 1990;259:H668–H673.

    PubMed  CAS  Google Scholar 

  52. Komori K, Lorenz RR, Vanhoutte PM. Nitric oxide, ACh, and electrical and mechanical properties of canine arterial smooth muscle. Am J Physiol 1988;255 (24):H207–H212.

    PubMed  CAS  Google Scholar 

  53. Rand VE, Garland CJ. Endothelium-dependent relaxation to acetylcholine in the rabbit basilar artery: Importance of membrane hyperpolarization. Br J Pharmacol 1992;106(1):143–50.

    Article  PubMed  CAS  Google Scholar 

  54. Siegel G, Schalke F, Stock G, Grote J. Prostacyclin, endothelium-derived relaxing factor, and vasodilatation. In: Samuelson B, Wong PYK, Sun FF, editors. Advances in prostaglandin, thromboxane, and leukotriene research. Vol. 19. New York: Raven Press, 1989:267–70.

    Google Scholar 

  55. Parkington HC, Tare M, Tonta MA, Coleman HA. Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine. J Physiol Lond 1993;465(459):459–76.

    PubMed  CAS  Google Scholar 

  56. De Nucci G, Gryglewski RJ, Warner TD, Vane JR. Receptor-mediated release of endothelium-derived relaxing factor and prostacyclin from bovine aortic endothelial cells is coupled. Proc Natl Acad Sci USA 1988;85:2334–38.

    Article  PubMed  Google Scholar 

  57. Nakashima M, Vanhoutte PM. Isoproterenol causes membrane hyerpolarization by stimulating adenylate cyclase in the canine saphenous vein. J Pharmacol Exp Ther 1994; in press.

    Google Scholar 

  58. Fujii K, Tominaga M, Ohmori S, Kobayashi K, Koga T, Takata Y, Fujishima M. Decreased endothelium-dependent hyperpolarization to acetylcholine in smooth muscle of the mesenteric artery of spontaneously hypertensive rats. Circ Res 1992; 70(4): 660–69.

    Article  PubMed  CAS  Google Scholar 

  59. Standen NS, Quayle JM, Davis NW, Brayden JE, Huank Y, Nelsen MT. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989;245:177–180.

    Article  PubMed  CAS  Google Scholar 

  60. Plane F, Garland CJ. Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery. Br J Pharmacol 1993;110(2):651–56.

    Article  PubMed  CAS  Google Scholar 

  61. McPherson GA, Angus JA. Evidence that acetylcholine-mediated hyperpolarization of the rat small mesenteric artery does not involve the K+ channel opened by cromakalim. Br J Pharmacol 1991;103(1):1184–90.

    Article  PubMed  CAS  Google Scholar 

  62. Cowan CL, Cohen RA. Different mechanisms of relaxation of pig coronary artery to bradykinin and cromakalim are distinguished by potassium channel blockers. J Pharmacol Exp Ther 1992;260(1):248–53.

    PubMed  CAS  Google Scholar 

  63. Cowan CL, Palacino JJ, Najibi S, Cohen RA. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries. J Pharmacol Exp Ther 1993;266(3):1482–89.

    PubMed  CAS  Google Scholar 

  64. Hwa JJ, Ghibaudi L, Williams P, Chatterjee M. Comparison of acetylcholine-dependent relaxation in large and small arteries of rat mesenteric vascular bed. Am J Physiol 1994; 266(3):H952–58.

    PubMed  CAS  Google Scholar 

  65. Nagao T, Illiano S, Vanhoutte PM. Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-L-arginine in rats. Am J Physiol 1992; 263(4 Pt 2):H1090–94.

    PubMed  CAS  Google Scholar 

  66. Hasunuma K, Yamaguchi T, Rodman DM, O’Brien RF, McMurtry FI. Effects of inhibitors of EDRF and EDHF on vasoreactivity of perfused rat lung. Am J Physiol 1991;260(4):L97–L104.

    PubMed  CAS  Google Scholar 

  67. Mugge A, Lopez JAG, Piegors DJ, Breese KR, Heistad DD. Acetylcholine-induced vasodilatation in rabbit hindlimb in vivo is not inhibited by analogues of L-arginine. Am J Physiol 1991;260(29):H242–H247.

    PubMed  CAS  Google Scholar 

  68. Rivers RJ, Duling BR. Are the resistance vessels influenced by an endothelium derived relaxing factor (EDRF)? Federation Proc 1986;45:196.

    Google Scholar 

  69. Ross G, Chaudhuri G, Ignaro LJ, Chyu KY. Acetylcholine vasodilation of resistant vessels in vivo may not entirely depend on newly synthesized nitric oxide. Eur J Pharmacol 1991;195:291–93.

    Article  PubMed  CAS  Google Scholar 

  70. Woolfson RG, Poston L. Effect of NG-monomethyl-L-arginine on endothelium-dependent relaxation of human subcutaneous resistance arteries. Clin Sci Lond 1990;79:273–78.

    PubMed  CAS  Google Scholar 

  71. Lüscher TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 1986;8(4):344–48.

    Article  PubMed  Google Scholar 

  72. Sim MK, Singh M. Decreased responsiveness of the aortae of hypertensive rats to acetylcholine. Br J Pharmacol 1987;90:147–50.

    Article  PubMed  CAS  Google Scholar 

  73. Van de Voorde J, Leusen I. Endothelium-dependent and independent relaxation of aortic rings from hypertensive rats. Am J Physiol 1986;250:H711–H717.

    PubMed  Google Scholar 

  74. Van de Voorde J, Vanheel B, Leusen I. Depressed endothelium-dependent relaxation effects in aorta from hypertensive rats. Pflügers Arch 1988;411:500–04.

    Article  PubMed  Google Scholar 

  75. Diederich D, Yang Z, Bühler FR, Lüscher TF. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol 1990;258:H445–H451.

    PubMed  CAS  Google Scholar 

  76. Mayhan WG, Faraci FM, Heistad DD. Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 1987;253: H1435–H1440.

    PubMed  CAS  Google Scholar 

  77. Tesfarmariam B, Halpern W. Endothelium-dependent and endothelium-independent vasodilation in resistance arteries. Hypertension 1988;11:440–44.

    Article  Google Scholar 

  78. Van de Voorde J, Vanheel B, LeusenI.Endothelium-dependent relaxation and hyperpolarization in aorta from control and renal hypertensive rats. Circ Res 1992; 70(1): 1–8.

    Article  PubMed  Google Scholar 

  79. Fujii K, Ohmori S, Tominaga M, et al. Age-related changes in endothelium-dependent hyperpolarization in the rat mesenteric artery. Am J Physiol 1993;265(2 Pt 2):HSO9–16.

    Google Scholar 

  80. Nakashima M, Vanhoutte PM. Age-dependent decrease in endothelium-dependent hyperpolarizations to endothelin-3 in the rat mesenteric artery. J Cardiovasc Pharmacol 1993;22(S 8): S352–S354.

    Article  PubMed  CAS  Google Scholar 

  81. Mombouli JV, Illiano S, Nagao T, Scott BT, Vanhoutte PM. Potentiation of endothelium-dependent relaxations to bradykinin by angiotensin I converting enzyme inhibitors in canine coronary artery involves both endothelium-derived relaxing and hyperpolarizing factors. Circ Res 1992;71(1):137–44.

    Article  PubMed  CAS  Google Scholar 

  82. Erdos GE. Some old and some new ideas on kinin metabolism. J Cardiovasc Pharmacol 1990;15 (Supp1.6): S20-S 24.

    PubMed  CAS  Google Scholar 

  83. Mombouli JV, Nephtali M, Vanhoutte PM. Effects of the converting enzyme inhibitor cilazaprilat on endothelium-dependent responses. Hypertension 1991;18 (Supp1.4):I122–29.

    Google Scholar 

  84. Busse R, Luckhoff A, Mulsch A. Cellular mechanisms controlling EDRF/NO formation in endothelial cells. Basic Res Cardiol 1991;2:7–16.

    Google Scholar 

  85. Wiemer G, Scholkens BA, Becker RH, Busse R. Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hypertension 1991;18(4):558–63.

    Article  PubMed  CAS  Google Scholar 

  86. Vanhoutte PM, Schwelk WA, Biondi ML, Lorenz RR, Schini VB, Vidal MJ. Why are converting enzyme inhibitors vasodilators? Br J Clin Pharmacol 1989;28 (Supp1.2):95 S-103 S

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nakashima, M., Félétou, M., Vanhoutte, P.M. (1995). Endothelium-Dependent Hyperpolarization and Potassium Channels. In: Godfraind, T., Mancia, G., Abbracchio, M.P., Aguilar-Bryan, L., Govoni, S. (eds) Pharmacological Control of Calcium and Potassium Homeostasis. Medical Science Symposia Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0117-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0117-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4056-3

  • Online ISBN: 978-94-011-0117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics