Skip to main content

Modulation of K+ Channels: Pharmacological and Therapeutic Aspects

  • Chapter
Pharmacological Control of Calcium and Potassium Homeostasis

Part of the book series: Medical Science Symposia Series ((MSSS,volume 9))

Abstract

In most cells, the plasma membrane at rest is more permeable to K+than to Na+CI-or Ca2+; hence, K+channels are the major factor contributing to resting membrane potential and cell excitability. Furthermore, these channels intervene in the regulation of several cellular functions, such as cytosolic volume and hormone secretion [1] The opening of K+channels drives the membrane potential towards the K+equilibrium potential, which is around -90 mV. In excitable cells endowed with depolarization (voltage)-gated Ca2+channels, hyperpolarization prevents such channels from opening and, hence, negates Ca2+entry. In cells lacking voltage-gated Ca2+channels, such as the endothelial cells and leukocytes, hyperpolarization, by increasing the driving force for the entry of Ca2+into the cell, promotes Ca2+influx via pathways yet poorly characterized [2]. In view of the physiological importance of K+channels, it is no surprise that this class of ion channels is particularly heterogeneous.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hille B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA:Sinauer Associates Inc., 1992.

    Google Scholar 

  2. Choquet D, Korn H. Modulation of voltage-dependent potassium channels in B lymphocytes. Biochem Pharmacol 1988;37:3797–3802.

    Article  PubMed  CAS  Google Scholar 

  3. Strong M, Chandy KJ, Gutman GA. Molecular evolution of voltage-sensitive ion channel genes: On the origins of electrical excitability. Mol Biol Evol 1993;10:221–242.

    PubMed  CAS  Google Scholar 

  4. Jan LY, Jan YN. Potassium channels and their evolving gates. Nature 1994;371:119–122.

    Article  PubMed  CAS  Google Scholar 

  5. Katz AM. Cardiac ion channels. N Engl J Med 1993;328:1244–1251.

    Article  PubMed  CAS  Google Scholar 

  6. Stanfield PR, Davies NW, Shelton PA, et al. A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+of the inward rectifier, IRK1. J Physiol 1994;478:1–6.

    PubMed  CAS  Google Scholar 

  7. Taglialatela M, Wible BA, Caporaso R, Brown AM. Specification of pore properties by the carboxyl terminus of inwardly rectifying K+channels. Science 1994; 264:844–847.

    Article  PubMed  CAS  Google Scholar 

  8. Sakman B, Trube G. Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. J Physiol 1984;347:641–657.

    Google Scholar 

  9. Escande D, Mestre M, Cavero I, Brugada J, Kirchhof C. RP 58866 and its active enantiomer RP 62719 (Terikalant): Blockers of the inward rectifier K+current acting as pure class III antiarrhythmic agents. J Cardiovasc Pharmacol 1992;20(Supp1.2): S106–S113.

    Article  PubMed  CAS  Google Scholar 

  10. Arena JP, Kass RS. Block of heart potassium channels by clofilium and its tertiary analogs: Relationship between drug structure and type of channel blocked. Mol Pharmacol 1988;34:60–66.

    PubMed  CAS  Google Scholar 

  11. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. Primary structure and functional expression of a rat G protein-coupled muscarinic potassium channel. Nature 1993;364:802–806.

    Article  PubMed  CAS  Google Scholar 

  12. Reuveny E, Slesinger PA, Inglese J, et al. Activation of the cloned muscarinic potassium channel by Gi protein ßy subunits. Nature 1994;370:143–146.

    Article  PubMed  CAS  Google Scholar 

  13. Brown DA. G-proteins and potassium currents in neurons. Annu Rev Physiol 1990;52:215–242.

    Article  PubMed  CAS  Google Scholar 

  14. Kurachi Y. G-protein control of cardiac potassium channels. Trends Cardiovasc Med 1994;4:64–69.

    Article  PubMed  CAS  Google Scholar 

  15. Ashcroft SJH, Ashcroft FM. Properties and functions of ATP-sensitive K+channels. Cell Signal 1990;2:197–214.

    Article  PubMed  CAS  Google Scholar 

  16. Edwards G, Weston AH. The pharmacology of ATP-sensitive K+channels. Annu Rev Pharmacol Toxicol 1993;33:597–637.

    Article  PubMed  CAS  Google Scholar 

  17. Bernardi H, de Weille JR, Epelbaum J, et al. ATP-modulated K+channels sensitive to antidiabetic sulfonylureas are present in adenohypophysis and are involved in growth hormone release. Proc Natl Acad Sci USA 1993;90:1340–1344.

    Article  PubMed  CAS  Google Scholar 

  18. Giebisch G. Diuretic action of potassium channel blockers. Eur Clin Pharmacol 1993;44(Supp1.1): S3–S5.

    Article  CAS  Google Scholar 

  19. Honoré H, Lazdunski M. Hormone-regulated K+channels in follicle-enclosed oocytes are activated by vasorelaxing K+channel openers and blocked by antidiabetic sulfonylureas. Proc Natl Acad Sci USA 1991;88:5438–5442.

    Article  PubMed  Google Scholar 

  20. Honoré H, Lazdunski M. Single-channel properties and regulation of pinacidil/glibenclamide sensitive K+channels in follicular cells fromXenopusoocytes. Pflügers Arch 1993;424:113–121.

    Article  PubMed  Google Scholar 

  21. Terzic K, Tung RT, Kurachi Y. Nucleotide regulation of ATP-sensitive potassium channels. Cardiovasc Res 1994;28:746–753.

    Article  PubMed  CAS  Google Scholar 

  22. Atwal KS. Modulation of potassium channels by organic molecules. Med Res Rev 1992;12: 569–591.

    Article  PubMed  CAS  Google Scholar 

  23. Quast U. Potassium channel openers: Pharmacological and clinical aspects. Fundam Clin Pharmacol 1992;6:279–293.

    Article  PubMed  CAS  Google Scholar 

  24. Cavero I, Guillon JM. Pharmacological profile of potassium channel openers in the vasculature. In: Escande D, Standen N, editors. K+channels in cardiovascular medicine. Paris: Springer-Verlag, 1993:193–223.

    Google Scholar 

  25. Edwards G, Weston AH. Effect of potassium channel modulating drugs on isolated smooth muscle. In: Szekeres I, Papp JG, editors. Handbook of experimental pharmacology. Heidelberg: Springer, 1994;111:469–531.

    Google Scholar 

  26. Quayle JM, Bonev AD, Brayden JE, Nelson MT. Calcitonin gene-related peptide activated ATP-sensitive K+currents in rabbit arterial smooth muscle via protein kinase A. J Physiol 1994;475:9–13.

    PubMed  CAS  Google Scholar 

  27. Edwards G, Ibbotson T, Weston AH. Levcromakalim may induce a voltage-independent K+-current in rat portal veins by modifying the gating properties of the delayed rectifier. Br J Pharmacol 1993;110:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  28. Ashford MIJ, Bond CT, Blair TA, Adelman JP. Cloning and functional expression of a rat heart KATPchannel. Nature 1994;370:456–459.

    Article  PubMed  CAS  Google Scholar 

  29. Escande D, Cavero I. K+channel openers and “natural” cardio-protection. Trends Pharmacol Sci 1992;13:269–272.

    Article  PubMed  CAS  Google Scholar 

  30. Cook NS, Rudin M, Pally C, Blarer S, Quast U. Effects of the potassium channel openers SDZ-PCO 400 and cromakalim in anin vivorat model of occlusive arterial disease assessed by “P-NMR spectroscopy. J Vasc Med Biol 1993;4:14–22.

    Google Scholar 

  31. Escande D, Cavero I. Potassium channel openers in the heart. In: Escande D, Standen N, editors. K+channels in cardiovascular medicine. Paris: Springer-Verlag, 1993: 225–244.

    Google Scholar 

  32. Cavero I, Djellas Y, Guillon J-M. Ischemic myocardial cell protection conferred by the opening of ATP-sensitive potassium channels. Cardiovasc Drug Ther 1995;9(Supp1.2):245–255.

    Article  Google Scholar 

  33. Yao Z, Gross GJ. Effects of the KATPchannel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs. Circulation 1994,89:1769–1775.

    Article  PubMed  CAS  Google Scholar 

  34. Smallwood JK, Schelm JA, Bemis KG, Simpson PJ. Effect of activation of ATP-dependent potassium channels with (-)-pinacidil and (-)-3-pyridyl pinacidil on infarct size in a canine model of ischemia-reperfiision injury. J Cardiovasc Pharmacol 1993;22:731–743.

    Article  PubMed  CAS  Google Scholar 

  35. Beech DJ, Zhang H, Nakao K, Bolton TB. Single channel and whole-cell K-currents evoked by levcromakalim in smooth muscle cells from the rabbit portal vein. Br J Pharmacol 1993;110:583–590.

    Article  PubMed  CAS  Google Scholar 

  36. Bray KM, Quast U. A specific binding site for K+channel openers in rat aorta. J Biol Chem 1992;267:11689–11692.

    PubMed  CAS  Google Scholar 

  37. Quast U, Bray KM, Andres H, Manley PW, Baumlin Y, Dosogne J. Binding of the K+channel opener [3H]P1075 in rat isolated aorta: Relationship to functional effects of openers and blockers. Mol Pharmacol 1993;43:474–481.

    PubMed  CAS  Google Scholar 

  38. Noack TH, Deitmer P, Edwards G, Weston AH. Characterization of potassium currents modulated by BRL 38227 in rat portal vein. Br J Pharmacol 1992;106:717–726.

    Article  PubMed  CAS  Google Scholar 

  39. Quast U. Do the K+channels openers relax smooth muscle by opening K+channels? Trends Pharmacol Sci 1993;14:332–337.

    Article  PubMed  CAS  Google Scholar 

  40. Meisheri KD, Khan SA, Martin JL. Vascular pharmacology of ATP-sensitive K+channels: Interactions between glyburide and K+channel openers. J Vasc Res 1993;30:2–12.

    PubMed  CAS  Google Scholar 

  41. Ibbotson T, Edwards G, Noack Th, Weston AH. Effects of P1060 and aprikalim on whole-cell currents in rat portal vein; inhibition by glibenclamide and phentolamine. Br J Pharmacol 1993;108:991–998.

    Article  PubMed  CAS  Google Scholar 

  42. Quast U, Cook NS.In vitroandin vivocomparison of two K+channel openers, diazoxide and cromakalim, and their inhibition by glibenclamide. J Pharmacol Exp Therap 1989;250:261–271.

    CAS  Google Scholar 

  43. Bowring NE, Arch JRS, Buckle DR, Taylor JF. Comparison of the airways relaxant and hypotensive potencies of the potassium channel activators BRL 55834 and levcromakalim (BRL 38227)in vivoin guinea-pigs and rats. Br J Pharmacol 1993;109:1133–1139.

    Article  PubMed  CAS  Google Scholar 

  44. Empfield JR, Ohnmacht CJ, Russell K, et al. Proceedings from the 207th National ACS Meeting 1994; Abstract # 128.

    Google Scholar 

  45. Atwal KS, Grover GJ, Ahmed SZ, et al. Cardioselective anti-ischemic ATP-sensitive potassium channel openers. J Med Chem 1993;36:3971–3974.

    Article  PubMed  CAS  Google Scholar 

  46. Quast U. Effects of potassium channel activators in isolated blood vessels. In: Evans JM, Hamilton TC, Longman SD, Stemp G, editors. Potassium channels and their modulators. Chichester: E. Horwood, in press.

    Google Scholar 

  47. Richer C, Pratz J, Mulder P, Mondot S, Giudicelli JF, Cavero I. Cardiovascular and biological effects of K+channel openers, a class of drugs with vasorelaxant and cardioprotective properties. Life Sci 1990;47:1693–1705.

    Article  PubMed  CAS  Google Scholar 

  48. Pratz J, Mondot S, Montier F, Cavero I. Effects of the K+channel activators, RP 52891, cromakalim and diazoxide, on the plasma insulin level, plasma renin activity and blood pressure in rats. J Pharmacol Exp Therap 1991;258:216–258.

    CAS  Google Scholar 

  49. Cantin M, Araujo-Nascimento MF, Benchimol S, Desormeaux Y. Metaplasia of smooth muscle cells into juxtaglomerular cells in the juxtaglomerular apparatus, arteries, and arterioles of the ischemic (endocrine) kidney, Am J Pathol 1977;87:581–602.

    PubMed  CAS  Google Scholar 

  50. Ferrier CP, Kurtz A, Lehner P, et al. Stimulation of renin secretion by potassium-channel activation with cromakalim. Eur J Clin Pharmacol 1989;36:443–447.

    Article  PubMed  CAS  Google Scholar 

  51. Kurtz A. Cellular control of renin secretion. Rev Physiol Biochem Pharmacol. 1990;113:1–40.

    Article  Google Scholar 

  52. Tsuchiya K, Wang W, Giebisch G, Welling PA. ATP is a coupling modulator of parallel Na, K-ATPase-K-channel activity in the renal proximal tubule. Proc Natl Acad Sci USA 1992;89:6418–6422.

    Article  PubMed  CAS  Google Scholar 

  53. Sansom SC, Mougouris T, Ono S, DuBose, TD Jr. ATP-sensitive K+-selective channels of inner medullary collecting duct cells. Am J Physiol 1994;267:F489–F496.

    PubMed  CAS  Google Scholar 

  54. Beck JS, Laprade R, Lapointe JY. Coupling between transepithelial Na transport and basolateral K conductance in renal proximal tubule. Am J Physiol 1994;266:F517–F527.

    Article  PubMed  CAS  Google Scholar 

  55. Suzuki M, Takahashi K, Ikeda M, et al. Cloning of a pH-sensitive K+channel possessing two transmembrane segments. Nature 1994;367:642–645.

    Article  PubMed  CAS  Google Scholar 

  56. Clark MA, Humphrey SJ, Smith MP, Ludens JH. Unique natriuretic properties of the ATP-sensitive K+-channel blocker glyburide in conscious rats. J Pharmacol Exp Therap 1993;265:933–937.

    CAS  Google Scholar 

  57. Kau ST, Zografos P, Do ML, et al. Characterization of ATP-sensitive potassium channel-blocking activity of ZENECA ZM181,037, a eukalemic diuretic. Pharmacology 1994;49:238–248.

    Article  PubMed  CAS  Google Scholar 

  58. Honoré E, Lesage F, Romey G. Molecular biology of voltage-gated K+channels in the heart. Fundam Clin Pharmacol 1994;8:108–116.

    Article  PubMed  Google Scholar 

  59. Rettig J, Heinemann SH, Wunder F, et al. Inactivation properties of voltage-gated K+channels altered by presence of 3-subunit. Nature 1994;369:289–294.

    Article  PubMed  CAS  Google Scholar 

  60. Sanguinetti MC. Modulation of potassium channels by antiarrhythmic and antihypertensive drugs. Hypertension 1992;19:228–236.

    Article  PubMed  CAS  Google Scholar 

  61. Siegl PKS, Lynch JJ. Drugs for prevention of malignant ventricular arrhythmias. Exp Opin Invest Drugs 1994;3:1037–1040.

    Article  CAS  Google Scholar 

  62. Herzer T, Busch AE, Waldegger S, Lang F. Inhibition of humanskchannels expressed inXenopusoocytes by calmodulin antagonists. Eur J Pharmacol 1994;259:335–338.

    Article  PubMed  CAS  Google Scholar 

  63. Leonard RJ, Garcia ML, Slaughter RS, Reuben JP. Selective blockers of voltage-gated K+channels depolarize human T lymphocytes: Mechanism of the antiproliferative effect of charybdotoxin. Proc Natl Acad Sci (USA) 1992;89:10094–10098.

    Article  CAS  Google Scholar 

  64. Lin C, Boltz RC, Blake T, et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation.JExp Med 1993;177:637–646.

    Article  PubMed  CAS  Google Scholar 

  65. Garcia ML, Kaczorowski GJ. High conductance calcium-activated potassium channels: molecular pharmacology, purification and regulation. In: Potassium channel modulators. Weston AH, Hamilton TC, editors. London: Blackwell Scientific Publications, 1992:76–109.

    Google Scholar 

  66. Atkinson NS, Robertson GA, Ganetzky B. A component of calcium-activated potassium channels encoded by theDrosophila slolocus. Science 1991;253:551–555.

    Article  PubMed  CAS  Google Scholar 

  67. Butler A, Tsunoda S, McCobb DP, Wei A, Salkoff L.mSloa complex mouse gene encoding “Maxi” calcium-activated potassium channels. Science 1993;261:221–224.

    Article  PubMed  CAS  Google Scholar 

  68. Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science 1992;256:532–535.

    Article  PubMed  CAS  Google Scholar 

  69. Laurent F, Michel A, Bonnet PA, Chapat JP, Boucard M. Evaluation of the relaxant effects of SCA40, a novel charybdotoxin-sensitive potassium channel opener, in guinea-pig isolated trachealis. Br J Pharmacol 1993;108:622–626.

    Article  PubMed  CAS  Google Scholar 

  70. Michel A, Laurent F, Bompart J, et al. Cardiovascular effects of SCA40, a novel potassium channel opener, in rats. Br J Pharmacol 1993;110:1031–1036.

    Article  PubMed  CAS  Google Scholar 

  71. Huang JC, Garcia ML, Reuben JP, Kaczorowski GJ. Inhibition of ß-adrenoceptor agonist relaxation of airway smooth muscle by Ca2+-activated K+channels blockers. Eur J Pharmacol 1993;235:37–43.

    Article  PubMed  CAS  Google Scholar 

  72. Cook SJ, Archer K, Martin A, Buchheit KH, Fozard JR, Small RC. Evidence that K+channel opening is not important in the tracheal relaxant action of SCA40. Br J Pharmaco1;1995;114:143–151.

    Article  CAS  Google Scholar 

  73. Olesen S-P, Wätjen P, Bayes AG. A novel benzimidazolone, NS004, activates large-conductance Ca2+-dependent K+channels in aortic smooth muscle. Br J Pharmacol 1993;110:25p.

    Google Scholar 

  74. Olesen S-P, Munch E, Watjen F, Drejer J. NS004-an activator of Ca2+-dependent K+channels in cerebella granule cells. NeuroReport 1994;5:1001–1004.

    Article  PubMed  CAS  Google Scholar 

  75. Olesen S-P, Munch E, Moldt P, Drejer J. Selective activation of Ca2+-dependent K+channels by novel benzimidazolone. Eur J Pharmacol 1994;251:53–59.

    Article  PubMed  CAS  Google Scholar 

  76. Sargent CA, Grover GJ, Antonaccio MJ, McCullough JR. The cardioprotective, vasorelaxant and electrophysiological profile of the large conductance calcium-activated potassium channel opener NS004. J Pharmacol Exp Therap 1993;266:1422–1429.

    CAS  Google Scholar 

  77. Gribkoff VK, Champigny G, Barbry P, Dworetzky SI, Meanwell NA, Lazdunski M. The substituted benzimidazolone NS004 is an opener of the cystic fibrosis chloride channel. J Biol Chem 1994;269:10983–10986.

    PubMed  CAS  Google Scholar 

  78. McManus OB, Harris GH, Giangiacomo KM, et al. An activator of calcium-dependent potassium channels isolated from a medicinal herb. Biochemistry 1993;32:6128–6133.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quast, U., Guillon, JM., Cavero, I. (1995). Modulation of K+ Channels: Pharmacological and Therapeutic Aspects. In: Godfraind, T., Mancia, G., Abbracchio, M.P., Aguilar-Bryan, L., Govoni, S. (eds) Pharmacological Control of Calcium and Potassium Homeostasis. Medical Science Symposia Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0117-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0117-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4056-3

  • Online ISBN: 978-94-011-0117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics