Skip to main content

Actions of Insulin and Igf-I on Vascular Smooth Muscle Cation and Glucose Metabolism

  • Chapter
Pharmacological Control of Calcium and Potassium Homeostasis

Part of the book series: Medical Science Symposia Series ((MSSS,volume 9))

  • 59 Accesses

Abstract

Recent data indicates that impaired insulin action predisposes to increased vascular smooth muscle [1-26] (VSM) tone, the hallmark of hypertension associated with diabetes mellitus. This research has established VSM as an “insulin sensitive tissue” like skeletal muscle tissue and adipocytes. Insulin and insulin-like growth factor (IGF-I) regulate VSM intracellular cation metabolism through attenuating effects on inward calcium (Ca2+) currents [1 10 15 27 28] and by direct effects on VSMNa+,K+-ATPase pump expression and activity[29 30] and that IGF-I and insulin stimulate glucose uptake in VSM cells (VSMC). IGF-1 and insulin are structurally related [17] share receptors [17 18] and have similar post-receptor actions [17 18] (Figure 1). Unlike insulin, which must transverse the endothelium before acting on VSMC in vivo, IGF-1 is synthesized by VSMC [19]. Thus, IGF-1 may have more relevance than insulin in VSMC physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Epstein M And Sowers J. Diabetes mellitus and hypertension. Hypertension 1992;19:403–418.

    Article  PubMed  CAS  Google Scholar 

  2. Sowers JR, Sowers PS, Peuler JD. Role of insulin resistance and hyperinsulinemia in development of hypertension and atherosclerosis. Journ Lab Clin Med 1994;123:647–652.

    CAS  Google Scholar 

  3. Anderson EA, Hoffman RP, Balon TW, et al. Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 1991;87:2246–2252.

    Article  PubMed  CAS  Google Scholar 

  4. Sowers JR. At the cutting edge: Insulin resistance and hypertension. Mol Cell Endocrinol 1990;4: C87–C89.

    Article  Google Scholar 

  5. Baron AD, Brechtel-Hoals G, Johnson A, et al. Skeletal muscle blood flow: A possible link between insulin resistance and blood pressure. Hypertension 1993;21:129–135.

    Article  PubMed  CAS  Google Scholar 

  6. Yagi S, Takata S, Kiyokawa H, et al. Effects of insulin on vasoconstrictive responses to norepinephrine and angiotensin II in rabbit femoral artery and vein. Diabetes 1992;37:1064–1067.

    Article  Google Scholar 

  7. Hall JE, Coleman TG, Mizelle FIL, et al. Chronic hyperinsulinemia and blood pressure regulation. Am J Physiol 1990;27:F722–F731.

    Google Scholar 

  8. Sowers JR, Khoury S, Standley PR, et al. Mechanisms of hypertension in diabetes. Am J Hypertens 1991;4:177–182.

    Article  PubMed  CAS  Google Scholar 

  9. Sowers JR, Standley PR, Ram JL, et al. Hyperinsulinemia, insulin resistance and hyperglycemia. Contributing factors in the pathogenesis of hypertension and atherosclerosis. Am J Hypertens 1993;6:260–270.

    Article  Google Scholar 

  10. Ram JL, Fares MA, Standley PR, Sowers JR. Insulin inhibits vasopressin contraction of vascular smooth muscle cells. J Vasc Biol 1993;4:250–254.

    Google Scholar 

  11. Kahn AM, Seidel CL, Allen JC, O’Neil RG, Shelat H, Song T. Insulin reduces contraction and intracellular calcium concentration in vascular smooth muscle. Hypertension 1993;22:735–742.

    Article  PubMed  CAS  Google Scholar 

  12. Wang G, Glover KW, Dunlap RC, et al. Antagonism of endothelium derived relaxing factor (EDRF) production prevents hypotensive response to insulin. FASEB J 1993;7:A616.

    Google Scholar 

  13. Hirschberg R, Kopple JD. Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats. J Clin Invest 1989; 83(1):326–330.

    Article  PubMed  CAS  Google Scholar 

  14. Yu H-Y, Jeng YY, Yue C-J, et al. Endothelial-dependent vascular effects of insulin and insulin-like growth factor I in the perfused rat mesenteric artery and aortic ring. Diabetes 1994;43:1027–1032.

    Article  Google Scholar 

  15. Hu Y, Pete GM, Walsh MF, Sowers JR, Dunbar JC. IGF-I alters blood pressure and blood flow in normal rats: The effect of systemic vs. intracerebroventricular (ICV) administration. FAC Experimental Biology (abstract) 1995.

    Google Scholar 

  16. Kerr D, Tamborlane WV, Rife F, Sherwin RS. Effects of Insulin-like Growth Factor-1 on the responses to and recognition of hypoglycemia in humans. J Clin Invest 1993;91:141–147.

    Article  PubMed  CAS  Google Scholar 

  17. Murphy LJ, Ghahary A, Chakrabarti S. Insulin regulation of IGF-I expression in rat aorta. Diabetes 1990;39:657–661.

    Article  PubMed  CAS  Google Scholar 

  18. Tartare S, Ballotti R, Van Oberrghen E. Interactions between heterologous receptor tyrosine kinases: hormone stimulated insulin receptors activate unoccupied IGF-1 receptors. FEBS Lett 1991;295;219–225.

    Article  PubMed  CAS  Google Scholar 

  19. Delafontaine P, Bernstein KE, Alexander RW. Insulin-like growth factor I gene expression in vascular cells. Hypertension 1991;17:693–699.

    Article  PubMed  CAS  Google Scholar 

  20. Fagin JA, Roberts CT, LeReith D. Coordinate decrease of tissue insulin-like growth factor I post-transcriptional alternative mRNA transcripts in diabetes mellitus. Diabetes 1989;38:428–434.

    Article  PubMed  CAS  Google Scholar 

  21. Frattuli AL, Treadway JL, Pessin JE. Insulin/IGF-1 hybrid receptors: Implications for dominant-negative phenotype in syndromes of insulin resistance. J Cell Biochem 1992;48(1):43–50.

    Article  Google Scholar 

  22. Zemel MB, Peuler JD, Sowers JR, et al. Hypertension in insulin-resistant Zucker obese rats is independent of sympathetic neural support. Am J Phys 1992;262:E368–371.

    CAS  Google Scholar 

  23. Standley PR, Ram JL, Sowers JR. Insulin attenuation of vascular smooth muscle calcium responses in Zucker lean and obese rats. Endocrinology 1993;133;4:1693–1699.

    Article  PubMed  CAS  Google Scholar 

  24. Shehin SE, Sowers JR, et al. Impaired vascular smooth muscle 45Ca efflux and hypertension in Zucker obese rats. J Vasc Med Biol 1989;1:278–282.

    Google Scholar 

  25. Standley PR, Bakir MH, Sowers JR. Vascular insulin abnormalities, hypertension and accelerated atherosclerosis. Am J Kidney Dis 1993;6:39–46.

    Google Scholar 

  26. Reddy S, Shehin S, Sowers JR, et al. Aortic calcium-45 efflux and blood pressure regulation in streptozotocin-induced diabetic rats. J Vasc Med Biol 1990;2:46–51.

    Google Scholar 

  27. Standley PR, Zhang F, Ram JL, Sowers JR. Insulin attenuates vasopressin-induced calcium transients and a voltage-dependent calcium response in rat vascular smooth muscle cells. J Clin Invest 1991;88:1230–1236.

    Article  PubMed  CAS  Google Scholar 

  28. Hori MT, Fittinghof M, Tuck ML. Mechanism of insulin attenuation of calcium in cultured vascular smooth muscle cells. J Clin Invest 1993;92:1161–1167.

    Article  PubMed  Google Scholar 

  29. Tirupattur PR, Ram JL, Standley PR, Sowers JR. Regulation on Na’,K+-ATPase gene expression by insulin in vascular smooth muscle cells. Am J Hypertens 1993;6:626–629.

    Article  PubMed  CAS  Google Scholar 

  30. Simmons DA, Winegard AI. Insulin does not regulate vascular smooth muscle Na’,K+-ATPase activity in rabbit aorta. Diabetologia 1993;36:212–217.

    Article  PubMed  CAS  Google Scholar 

  31. Kotchen TA, Zhang HV, Covelli M, Blehsehmidt N. Insulin resistance and blood pressure in Dahl rats and in one-kidney, one-clip hypertensive rats. Am J Physiol 1991;261:E692–E697.

    PubMed  CAS  Google Scholar 

  32. Reaven BM, Twersky J, Chang H. Abnormalities of carbohydrate and lipid metabolism in Dahl rats. Hypertension 1991;18:630–635.

    Article  PubMed  CAS  Google Scholar 

  33. Herrara VLM, Chobanian AV, Ruiz-Opazo N. Isoform-specific modulation of NA+,K+-ATPase a subunit gene expression in hypertension. Science 1988;241:221–223.

    Article  Google Scholar 

  34. Sada T, Koike H, Ideda M, et al. Cytosolic free calcium of aorta in hypertensive rats. Hypertension 1990;16:245–251.

    Article  PubMed  CAS  Google Scholar 

  35. Standley RP, Rose K, Tirupathur PR, Sowers JR. Insulin stimulated glucose transport of vascular smooth muscles cells: Possible implications of GLUT-4 in the vasculature. Physiologist 1992;35:A13.

    Google Scholar 

  36. Standley PR, Rose KA, Sowers JR. Increased basal arterial smooth muscle glucose transport in the Zucker rat. Am J Hypertens, in press.

    Google Scholar 

  37. Brosius FC, Briggs JP, Marcus RG, et al. Insulin-responsive glucose transporter expression in renal microvessels and glomeruli. Kidney International 1992;42:1086–1092.

    Article  PubMed  CAS  Google Scholar 

  38. Bova S, Goldman WF, Yuan X-J, et al. Influence of Na+ gradient on Ca’ transients and contraction in vascular smooth muscle. Am J Physiol 1990;259(Heart Circ Physiol):H409–H423.

    PubMed  CAS  Google Scholar 

  39. Reuter H. Sodium-calcium exchange: Ins and outs of CaZ+ transport. Nature 1991;349:567–568.

    Article  PubMed  CAS  Google Scholar 

  40. Lynch RM, Paul RJ. Compartmentalization of glycolytic and glycogenolytic metabolism in vascular smooth muscle. Science 1987;222:1344–1346.

    Article  Google Scholar 

  41. Barron JT, Kapp SJ, Tow JP, Messer JV. Effect of altering carbohydrate metabolism on energy status and contractile function of vascular smooth muscle. Biochim Biophys Acta 1989;976:42–52.

    Article  PubMed  CAS  Google Scholar 

  42. Barron JT, Bárány K, Kopp SJ. Effects of ATP reduction of the pattern of force development and myosin light chain phosphorylation in intact arterial smooth muscle. Biochim Biophys Acta 1989;1010:278–282.

    Article  PubMed  CAS  Google Scholar 

  43. Hardin CD, Wiseman RW, Kushmerich MJ. Vascular oxidative metabolism under different metabolic conditions. Biochimica et Bioophysica Acta 1992;1133:133–141.

    Article  CAS  Google Scholar 

  44. Lynch RM, Paul RJ. Glucose uptake in porcine carotid artery: Relation to alterations in active Na+-K+ transport. Am J Physiol 1984;247:C433–441.

    PubMed  CAS  Google Scholar 

  45. Sussman I, Schultz V, Gupta S, et al. Differential effect of metabolic fuels on the energy state of the Na+,K+-ATPase in isolated cerebral microvessels. Am J Physiol 1993;265:E777–E782.

    PubMed  CAS  Google Scholar 

  46. Schull GE, Greeb J, Lingrel JB. Molecular cloning of three distinct forms of the Na+,K--ATPase alpha-subunit from rat brain. Biochemistry 1986;25:8125–8132.

    Article  Google Scholar 

  47. Sweadner KJ. Isozymes of the Na+/K+-ATPase. Biochim Biophys Acta 1989;988:185–220.

    Article  PubMed  CAS  Google Scholar 

  48. Resh MD, Nemenoff RA, Guidotti G. Insulin stimulation of Na+,K+-ATPase triphosphatase-dependent 86RB-uptake in rat adipocytes. J Biol Chem 1990;255:10938–10945.

    Google Scholar 

  49. Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int 1989;35:1–13.

    Article  PubMed  CAS  Google Scholar 

  50. O’Hare T, Sussman KE, Draznin B. Effect of diabetes on cytosolic free Ca“ and Nat-K+-ATPase in rat aorta. Diabetes 1991;40:1560–1563.

    Article  Google Scholar 

  51. Omatsu-Kanbe M, Kitasato H. Insulin stimulates the translocation of Na+/K+dependent ATPase molecules from intracellular stores to the plasma membrane in frog skeletal muscle. Biochem J 1990;272:727–733.

    PubMed  CAS  Google Scholar 

  52. Nishida K, Ohara T, Johnson J, et al. Na+/K+-ATPase activity and its alpha II subunit gene expression in rat skeletal muscle: Influence of diabetes, fasting, and refeeding. Metab Clin Exp 1992;41:56–63.

    Article  PubMed  CAS  Google Scholar 

  53. Hundal HS, Maritto A, Mitsumato Y, et al. Insulin induces translocation of the a2 and 131 subunits of the Na’/K+-ATPase from intracellular compartments to the plasma membranes in mammalian skeletal muscle. J Biol Chem 1992;267(8):5040–5043.

    PubMed  CAS  Google Scholar 

  54. Sampson SR, Bak A, Krok S, et al. Effects of insulin-like growth factors on the expression of Na-channels and Na,K pump in cultured skeletal muscle (Abstract), Prod Int AGF Symp 2nd San Francisco 1991;B35.

    Google Scholar 

  55. Everts ME, Dorup I, Flyvbjerg A, et al. NatK+ pump in rat muscle: Effects of hypophysectomy, growth hormone, and thyroid hormone. Am J Physiol 1990;259 (Endocrinol Metab 22):E278–E293.

    PubMed  CAS  Google Scholar 

  56. Dorup I, Flyvbjerg A. Effects of IGF-1 infusion on growth and muscle Na+-K+- pump concentration in K’-deficient rats. Am J Physiol 1993;264:E810–815.

    PubMed  CAS  Google Scholar 

  57. Thorens B, Charon MJ, Lodish HF. Molecular physiology of glucose transporters. Diabetes Care 1990;13:209–218.

    Article  PubMed  CAS  Google Scholar 

  58. Kahn BB. Facilitative glucose transporters. Regulatory mechanisms and dysregulation in diabetes. J Clin Invest 1992;89:1367–74.

    Article  PubMed  CAS  Google Scholar 

  59. Reusch JE-B, Begum N, Sussman KE, Draznin B. Regulation of GLUT-4 phosphorylation by intracellular calcium in adipocytes. Endocrinology 1991;129:3269.

    Article  PubMed  CAS  Google Scholar 

  60. Klip A. Acute and chronic signals controlling glucose transport in skeletal muscle. J Cell Biochem 1991;48:51–60.

    Article  Google Scholar 

  61. Koranyi L, James D, Muechler M, Permutt MA. Glucose transporter levels in spontaneously obese (OB/OB) insulin-resistant mice. J Clin Invest 1990;85:962–967.

    Article  PubMed  CAS  Google Scholar 

  62. Hainault M, Suerre-Millo M, Suchard K, Larau M. Differential regulation of adipose tissue glucose transporters in genetic obesity (fatty rat). J Clin Invest 1991;87:1127–1131.

    Article  PubMed  CAS  Google Scholar 

  63. Horton ED, King PA, Hirshman MF, Horton ES. Failure of insulin to stimulate glucose transporter translocation in skeletal muscle from obese (Fa/fa) Zucker rat. Diabetes 1990;39:83A(abstr).

    Google Scholar 

  64. Lorenz JN, Schnermann J, Brosius FC, et al. Intracellular ATP can regulate afferent arteriolar tone via ATP-sensitive KC channels in the rabbit. J Clin Invest 1992;90:733–40.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sowers, J.R. (1995). Actions of Insulin and Igf-I on Vascular Smooth Muscle Cation and Glucose Metabolism. In: Godfraind, T., Mancia, G., Abbracchio, M.P., Aguilar-Bryan, L., Govoni, S. (eds) Pharmacological Control of Calcium and Potassium Homeostasis. Medical Science Symposia Series, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0117-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0117-2_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4056-3

  • Online ISBN: 978-94-011-0117-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics