Skip to main content

Hydrogen Production Methods

  • Chapter
Hydrogen Energy System

Part of the book series: NATO ASI Series ((NSSE,volume 295))

Abstract

Commercially available hydrogen production methods such as steam reforming of natural gas, partial oxidation of heavy oil, coal gasification, coal carbonization, steam iron process that are based on fossil hydrocarbons and methods in the stage of development, like thermolysis, radiolysis and photolysis of water, thermochemical cycles, hydrogen from hydrogen disulfide and biomass are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, B.M. and Schreiner, F. (1974), Ind. Eng. Fundam., 13, 30.

    Article  Google Scholar 

  • Barbir, F. and Veziroğlu, T.N., (1992), ‘Hydrogen Energy System and Hydrogen Production Methods’, In, Clean Utilization of Coal, Y.Yürüm (Ed.), NATO ASI Series C 370, Kluwer Academic Publishers, Dordrecht, p. 277.

    Google Scholar 

  • Bartlett, R.W. (1979), Preliminary Evaluation of Process for Recovering Hydrogen from Hydrogen Sulfide, SRI International, File No. 79-447, p. 55.

    Google Scholar 

  • Baykara, S.Z. and Bilgen, E. (1988) ’Solar Hydrogen by Hybrid Process of Water Thermolysis and Electrolysis’, in T.N. Veziroglu and A.N. Protsenko (Eds.) Hydrogen Energy Progress VII, 2, 809–818.

    Google Scholar 

  • Baykara, S.Z. and Bilgen, E. (1989), ‘An Overall Assessment of Hydrogen Production by Solar Water Thermolysis’, Int. J. Hydrogen Energy, 14, 881–889.

    Article  Google Scholar 

  • Bernard, G. and Vidal, J. (1984), Petrole et Techniques, 307, 28–38.

    Google Scholar 

  • Bertling, H. and Nashan, G. (1981), Erdöl Kohle Erdgas Petrochem. 34, 397–401.

    Google Scholar 

  • Bowman, M.G. (1980), ‘Interfacing Primary Heat Sources and Cycles for Thermochemical Hydrogen Production’, 3rd World Hydrogen Energy Conference, Tokyo.

    Google Scholar 

  • Bridger, G.W. (1972), Chem. Process Eng. (London), 53, 38.

    Google Scholar 

  • Bull, S.R. (1988), ‘Hydrogen Production by Photoprocesses’, Proc. Int. Renewable Energy Conf., Honolulu, Hawaii, p. 413–426.

    Google Scholar 

  • Catalyst Handbook ICI (1972), Wolf Scientific Books, London.

    Google Scholar 

  • Chivers, T., Hyne, J.B. and Lau, C. (1980), Int. J. Hydrogen Energy, 5, 499.

    Article  Google Scholar 

  • Chivers, T. and Lau, C. (1987), Int. J. Hydrogen Energy, 12, 561.

    Article  Google Scholar 

  • Clauson, F.A. and Marion, C.P. (1980), AIChE-IMIQ Energy Meeting, Acapulco.

    Google Scholar 

  • Dalluge, G. and Polster, P. (1981), Chem. Tech., 33, 636–640.

    Google Scholar 

  • Danno, A. (1974), CEER Chem. Econ. Eng. Rev. 7.

    Google Scholar 

  • Davis, G.R. (1990), ‘Energy for Planet Earth’, Scientific American, 263, 55–62.

    Article  Google Scholar 

  • Engels, H., et al. (1987), ‘Thermochemical Hydrogen Production’, Int. J. Hydrogen Energy, 12, 291–295.

    Article  Google Scholar 

  • Farhataziz, A. and Rodgers, M.A. (1987), Radiation Chemistry, VCH Verlagsgesllschaft, Weinheim.

    Google Scholar 

  • Hüttinger, K.J. (1988), ‘Kinetics of Coal Gasification’, In, New Trends in Coal Science, Y.Yürüm (Ed.), NATO ASI Series C 244, Kluwer Academic Publishers, Dordrecht, p.433.

    Google Scholar 

  • Jellinek, H.H.G. and Kachi, H. (1984), Int. J. Hydrogen Energy, 9, 677.

    Article  Google Scholar 

  • Kotera, Y., Todo, N. and Fukuda, K. (1976), US 3 962 409.

    Google Scholar 

  • Meckel, J.F. and Flockenhaus, C. (1981), Chem. Anlagen Verfahren, 122–128.

    Google Scholar 

  • Minet, R.G. and Desai, K. (1983), J. Hydrogen Energy, 8, 285.

    Article  Google Scholar 

  • Moore, R.B. (1983), J. Hydrogen Energy, 8, 905.

    Article  Google Scholar 

  • Lede, J., Lapique, F. and Villermaux, J. (1983), Int. J. Hydrogen Energy, 8, 675.

    Article  Google Scholar 

  • Lede, J. (1986), Int. Chem. Eng. 26, 647.

    Google Scholar 

  • Lede, J., Villermaux, Ouzane, R., Hossain, M.A., Ouahes, R. (1987), Int. J. Hydrogen Energy, 12, 3.

    Article  Google Scholar 

  • National Hydrogen Association (1991), The Hydrogen Technology Assessment’, Phase I, A Report for The NASA, Washington, D.C.

    Google Scholar 

  • Ohta, T. (Ed.), (1978), Solar Hydrogen Energy System, Pergamon Press, New York.

    Google Scholar 

  • Plass, Jr. H.J., Barbir, F. and Veziroğlu, T.N. (1991), ‘Hydrogen Systems Application Analysis’, Proc. DOE/SERI Hydrogen Program Review Meeting, Washington, D.C.

    Google Scholar 

  • Raymond, M.E.D. (1974), can. Sulfur Symp. Calgary, Canada.

    Google Scholar 

  • Rostrup-Nielsen, J. (1977), Chem. Eng. Prog., 73, 87–92.

    Google Scholar 

  • Schulten, R. (1978), ‘Nuclear Energy as a Primary Energy Source for Hydrogen Production’, 2nd World Hydrogen Conference, Zürich.

    Google Scholar 

  • Seider, W.D., Gautam, R. andWhite, C.W. (1980), ‘Computation of Phase and Chemical Equilibrium, A Review’, ACS Symp. Ser., 124, 115–134.

    Article  Google Scholar 

  • Spinks, J.W.T. and Woods, R.J. (1964), An Introduction to Radiochemistry, Wiley and Sons, New York.

    Google Scholar 

  • Steinberg, M. and Cheng, H. C. (1988), ‘Modern and Prospective Technologies for Hydrogen Production from Fossil Fuels’, in T.N. Veziroglu and A.N. Protsenko (Eds.), Hydrogen Energy Progress VII, Pergamon Press, Oxford, 2, 699–740.

    Google Scholar 

  • Stull, D.R., Westrum, E.F.,and Sinke, G.C. (1969), The Chemical Thermodynamics of Organic Compounds, Wiley, New York, p. 631.

    Google Scholar 

  • Tarman, P.B. and Biljetina, R. (1978), The Steam Iron Process for Hydrogen Production, 85th National Meeting of the AIChE, Philedelphia.

    Google Scholar 

  • van Krevelen, D. W. (1993), Coal, Third Edition, Elsevier, Amsterdam, pp. 741.

    Google Scholar 

  • Winter, C.-J. and Nitsch, J. (1988), ‘Hydrogen as an Energy Carrier’, Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  • Yalçin, S. (1989), ‘A Review of Nuclear Hydrogen Production’, Int. J. Hydrogen Energy, 14, 551–561.

    Article  Google Scholar 

  • Zaman, J. and Chakma, A. (1995), Fuel Proc. Technol., 41, 159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yürüm, Y. (1995). Hydrogen Production Methods. In: Yürüm, Y. (eds) Hydrogen Energy System. NATO ASI Series, vol 295. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0111-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0111-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4053-2

  • Online ISBN: 978-94-011-0111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics