Skip to main content

Progress in PEM Fuel Cell Systems Development

  • Chapter
Hydrogen Energy System

Part of the book series: NATO ASI Series ((NSSE,volume 295))

Abstract

Proton Exchange Membrane (PEM) fuel cell stacks, consisting of up to 60 cells having an active area of 780 cm2, have been designed, built, tested, and installed in fuel cell power systems for mobile and stationary applications. The differences between operational parameters in a single cell, stack of cells and fuel cell systems are discussed. The paper addresses the research, design, manufacturing and marketing issues pertinent to commercialization of PEM fuel cell technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson, M.S., and S. Gottesfeld, High Performance Catalyzed Membranes of Ultra-Low Pt Loadings for Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. Vol. 139, No. 2, pp. L28–L30, 1992

    Article  Google Scholar 

  2. Srinivasan, S., O.A. Velev, A. Parthasarthy, D.J. Manko, and A.J. Appleby, High Energy Efficiency and High Power Density Proton Exchange Membrane Fuel Cells — Electrode Kinetics and Mass Transport, NASA Conf. Publ. 3125 (Space Electrochem. Res. Technol.), pp. 101–122, 1991

    Google Scholar 

  3. Murphy, O.J., Lyntech, Inc., private communication, December 1992

    Google Scholar 

  4. Watkins, D.S., Research, Development, and Demonstration of Solid Polymer Fuel Cell Systems, in L.J.M.J. Blomen and M.N. Mugerwa (eds.) Fuel Cell Systems, Plenum Press, New York, 1993

    Google Scholar 

  5. Ballard Power Systems, Inc., The Ballard Fuel Cell, brochure #700.306.008

    Google Scholar 

  6. Taylor, E.J., E.B. Anderson, and N.R.K. Vilanbi, Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc., Vol. 139, No. 5, pp. L45–L46, 1992

    Article  Google Scholar 

  7. Wilson, M.S., and S. Gottesfeld, Thin-Film Catalyst Layers for Polymer Electrolyte Fuel Cells, Journal of Applied Electrochemistry, Vol. 22, pp. 1–7, 1992

    Article  Google Scholar 

  8. S. Srinivasan, D.J. Manko, H. Koch, M.A. Enayetullah, and A.J. Appleby, Recent Advances in Solid Polymer Electrolyte Fuel Cell Technology with Low Platinum Loading Electrodes, Journal of Power Sources, Vol. 29, pp. 367–387, 1990

    Article  Google Scholar 

  9. Dhar, H.P., On Solid Polymer Fuel Cells, J. Electroanal. Chem. Vol. 357, pp. 237–250, 1993

    Article  Google Scholar 

  10. Lehman, P.A., C.E. Chamberlin, T.G. Herron, and R.M. Reid, Use of a Proton Exchange Membrane Fuel Cell for Standby Power in a Stand-Alone Energy System, presented at the International Conference on Fuel Cells, Long Beach, CA, February 22–25, 1994

    Google Scholar 

  11. E.A. Ticianelli, C.R. Derouin, A. Redondo and S. Srinivasan, Methods to Advance Technology of Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc. Vol. 135, No. 9, pp. 2209–2214, 1988

    Article  Google Scholar 

  12. Mosdale, R., P. Stevens, F. Novel-Cattin, B. Loppinet, G. Gebel, P. Aldebert, and m. Pineri, Water Management in a Solid Polymer Electrolyte Fuel Cell, Proceedings of the European Space Power Conference, Florence, September 1991, ESA-SP-320, pp. 479–483, 1991

    Google Scholar 

  13. Prater, K.B., Solid Polymer Fuel Cell Developments at Ballard, Journal of Power Sources, Vol. 37, pp. 181–188, 1992

    Article  Google Scholar 

  14. Strasser, K., Mobile Fuel Cell Development at Siemens, Journal of Power Sources, Vol. 37, pp. 209–219, 1992

    Article  Google Scholar 

  15. Perry, J.H., Jr., A. Person, S.M. Misiaszek, D.P. Alessi, Closed Loop Reactant/Product Management System for Electrochemical Galvanic Energy Devices, U.S. Patent No. 5,047,298, 1991

    Google Scholar 

  16. M. Nadal and F. Barbir, Development of a Hybrid Fuel Cell/Battery Powered Electric Vehicle, prepared for 10th World Hydrogen Energy Conference, Cocoa Beach, FL, June 20–24, 1994

    Google Scholar 

  17. Muradov, N.Z., How to Produce Hydrogen from Fossil Fuels without CO2 Emission, Int. J. Hydrogen Energy, Vol. 18, No. 3, pp. 211–216, 1993

    Article  MathSciNet  Google Scholar 

  18. Howell, D.G., (ed.), The Future of Energy Gases, U.S. Geological Survey Professional Paper 1570, U.S. Government Printing Office, Washington, 1993

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barbir, F. (1995). Progress in PEM Fuel Cell Systems Development. In: Yürüm, Y. (eds) Hydrogen Energy System. NATO ASI Series, vol 295. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0111-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0111-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4053-2

  • Online ISBN: 978-94-011-0111-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics