Skip to main content

Parabolic Harnack inequality for divergence form second order differential operators

  • Chapter
Potential Theory and Degenerate Partial Differential Operators
  • 307 Accesses

Abstract

Old and recent results concerning Harnack inequalities for divergence form operators are reviewed. In particular, the characterization of the parabolic Harnack principle by simple geometric properties -Poincaré inequality and doubling property- is discussed at length. It is shown that these two properties suffice to apply Moser’s iterative technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexopoulos G.: An application of homogenization theory to harmonic analysis: Harnack inequalities and Riesz transforms on Lie groups of polynomial growth. Canadian J. Math. 44, 1992, 691–727.

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson D. G.: Bounds for the fundamental solution of a parabolic equation. Bull. Amer. Math. Soc. 73, 1967, 890–896.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aronson D. G.: Non-negative solutions of linear parabolic equations Ann. Scu. Norm. Sup. Pisa. CI. Sci. 22, 1968, 607–694;

    MathSciNet  MATH  Google Scholar 

  4. Aronson D. G., Non-negative solutions of linear parabolic equations Addendum 25, 1971, 221–228.

    MathSciNet  MATH  Google Scholar 

  5. Aronson D. G. and Serrin J.: Local behavior of solutions of quasilinear parabolic equations. Arch. Rat Mech. Anal. 25, 1967, 81–122.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakry D., Coulhon Th., Ledoux M. Saloff-Coste L.: Sobolev inequalities in disguise. Preprint 1994.

    Google Scholar 

  7. Biroli M. and Mosco U.: Formes de Dirichlet et estimations structurelles dans les milieux discontinus. C. R. Acad. Sci. Paris, 313, 1991, 593–598.

    MathSciNet  MATH  Google Scholar 

  8. Biroli M. and Mosco U.: A Saint-Venant Principle for Dirichlet forms on discontinuous media. Ann. di Mat. Pura e Appl.

    Google Scholar 

  9. Biroli M. Mosco U.: Sobolev and isoperimetric inequalities for Dirichlet forms on homoge- neous spaces. Atti Accad. Naz. Lincei CI. Sci. Fis. Mat. Natur., 1994

    Google Scholar 

  10. Bôcher M.: Singular points of functions which satisfy partial differential equations of elliptic type. Bull. Amer. Math. Soc. 9, 1903, 455–465.

    Article  MathSciNet  Google Scholar 

  11. Bombieri E.: Theory of mininal surfaces and a counter-example to the Berstein conjecture in high dimensions. Mineographed Notes of Lectures held at Courant Institute, New-York University, 1970.

    Google Scholar 

  12. Bombieri E. and Giusti E.: Harnack’s inequality for elliptic differential equations on mininal surfaces. Invent. Math. 15, 1972, 24–46.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bony J-M.: Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier, 19, 1969, 277–304.

    Article  MathSciNet  MATH  Google Scholar 

  14. Brelot M.: Elements de la théorie classique du potentiel. Centre de documentation universitaire, Paris, 1965.

    Google Scholar 

  15. Buser P.: A note on the isoperimetric constant. Ann. Sci. Ecole Norm. Sup. 15, 1982, 213–230.

    MathSciNet  MATH  Google Scholar 

  16. Cao H-D. and Yau S-T.: Gradients estimates, Harnack inequalities and estimates for heat kernels of sum of squares of vector fields. Math. Zeit. 211, 1992, 485–504.

    Article  MathSciNet  MATH  Google Scholar 

  17. Chanillo S. and Wheeden R.: Haxnack’s inequality and mean-value inequalities for solutions of degenerate elliptic equations. Coram. Part. Diff. Equ. 11, 1986, 1111–1134.

    Article  MathSciNet  MATH  Google Scholar 

  18. Charienza F. and Serapioni R.: A Harnack inequality for degenerate parabolic equations. Coram. Part. Diff. Equ. 9, 1984, 719–749.

    Article  Google Scholar 

  19. Cheeger J., Gromov M. and Taylor M.: Finite propagation speed, kernel estimates for func- tions of the Laplace operator and the geometry of complete Riemannian manifolds. J. Diff. Geo. 17, 1982, 15–23.

    MathSciNet  MATH  Google Scholar 

  20. Cheng S., Li P. and Yau S-T.: On the upper estimate of the heat kernel of a complete Riemannian manifold. Amer. J. Math. 103, 1981, 1021–1036.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cheng S. and Yau S-T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure. Appl. Math. 28, 1975, 333–354.

    Article  MathSciNet  MATH  Google Scholar 

  22. Coulhon Th. and Saloff-Coste L. Variétés riemanniennes isométriques à l’infini. 1994.

    Google Scholar 

  23. Davies E.B.: Explicit constants for Gaussian upper bounds on heat kernels. Amer. J. Math. 109, 319–333.

    Google Scholar 

  24. Davies E.B.: Heat kernels and spectral theory. Cambridge University Press, 1989.

    Book  MATH  Google Scholar 

  25. Doob J.L.: Classical potential theory and its probabilistic counterpart. New-York, Springer-Verlag, 1984.

    Book  MATH  Google Scholar 

  26. Fabes E.: Gaussian upper bounds on fundamental solutions of parabolic equations: the method of Nash. In Dirichlet forms, Led. Not. Math. 1563, Springer-Verlag, 1993, 1–20.

    Chapter  Google Scholar 

  27. Fabes E. and Stroock D.: A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Rat. Mech. Anal. 96, 1986, 327–338.

    Article  MathSciNet  MATH  Google Scholar 

  28. Fefferman C. and Phong D.H: Subelliptic eigenvalue problems. In Proceedings of the conference in harmonic analysis in honor of Antoni Zygmund, Wadsworth Math. Ser., Wadsworth, Belmont, California, 1981, 590–606.

    Google Scholar 

  29. Fefferman C. and Sanchez-Calle A.: Fundamental solutions for second order subelliptic oper- ators. Ann. Math. 124, 1986, 247–272.

    Article  MathSciNet  MATH  Google Scholar 

  30. Fernandes J.: Mean value and Harnack inequalities for certain class of degenerate parabolic equations. Rev. mat. Iberoamericana, 7 1991, 247–286.

    Article  MathSciNet  MATH  Google Scholar 

  31. Franchi B.: Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. Trans. Amer. Math. Soc. 327, 1991, 125–158.

    MathSciNet  MATH  Google Scholar 

  32. Franchi B. and Lanconelli E.: An embedding theorem for Sobolev spaces related to non-smooth vector fields and Harnack inequality. Commm. P.D.E. 9, 1984, 1237–1264.

    Article  MathSciNet  MATH  Google Scholar 

  33. Franchi B. and Serapioni R.: Pointwise estimates for a class of strongly degenerate elliptic operators: a geometric approach. Ann. Scul. Norm. Sup. Pisa, 14, 1987, 527–568.

    MathSciNet  MATH  Google Scholar 

  34. Gilbarg D. and Trudinger N.: Elliptic partial differential equations of second order. Sec. Ed. Berlin, Heidelberg, Springer-Verlag 1983.

    Book  MATH  Google Scholar 

  35. de Giorgi E.: Sulla differentiabilita el’analiticita delle estremali degli integrali multipli regolari Mem. Accad. Sci. Torino, CI. Sci. Fis. Mat. Nat, Ser 3, 3, 1957, 25–43.

    Google Scholar 

  36. Grigory’an A.: The heat equation on noncompact Riemannian manifold. Math. USSR Sbornik, 72, 1992, 47–76.

    Article  MathSciNet  Google Scholar 

  37. Guivarc’h Y.: Croissance polynomiale et periode des functions harmoniques. Bull. Soc. Math. France, 101, 1973, 149–152.

    MathSciNet  Google Scholar 

  38. Gutiérrez E. and Wheeden R.: Mean value and Harnack inequalties for degenerate parabolic equations. Coll. Math. 60, Volume dédié a M. Anton Zygmund, 1990, 157–194.

    Google Scholar 

  39. Hadamard J.: Extension à l’équation de la chaleur d’un théorème de A. Harnack. Rend. Circ. Mat. Palermo, Ser. 2, 3, 1954, 337–346.

    Article  MathSciNet  MATH  Google Scholar 

  40. Harnack A.: Die Grundlagen der Theorie des logarthmischen Potentials und der eindeutigen Potentialfunktion. Leipzig, Teubner, 1887.

    Google Scholar 

  41. Hörmander L.: Hypoelliptic second order differential equations. Acta Math. 119, 1967, 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  42. Jerison D.: The Poincaré inequality for vector fields satisfying the Hörmander’s condition. Duke Math. J. 53, 1986, 503–523.

    MathSciNet  MATH  Google Scholar 

  43. Jerison D. and Sanchez-Calle A.: Subelliptic second order differential operators. In Complexe analysis III, Procedings, Lect. Not. Math. 1277, Springer-Verlag, 1986, 47–77.

    Google Scholar 

  44. Krylov N. and Safonov M.: A certain property of solutions of parabolic equations with mesurable coefficients. Izv. Akad. Nauk. SSSR, 44, 1980, 81–98.

    MathSciNet  Google Scholar 

  45. Kusuoka S. and Stroock D.: Application of Malliavin calculus, part 3. J. Fac. Sci. Univ. Tokyo, Série IA, Math. 34, 1987, 391–442.

    MathSciNet  MATH  Google Scholar 

  46. Kusuoka S. and Stroock D.: Long time estimates for the heat kernel associated with uniformly subelliptic symmetric second order operator. Ann. Math. 127, 1988, 165–189. 391–442.

    Article  MathSciNet  MATH  Google Scholar 

  47. Li P. and Yau S-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156, 1986, 153–201.

    Article  MathSciNet  Google Scholar 

  48. Lu G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Rev. Mat. Iberoamericana, 8, 1992, 367–439.

    Article  MathSciNet  MATH  Google Scholar 

  49. Maheux P. and Saloff-Coste L.: Analyse sur les boules d’un opérateur sous-elliptique. Preprint 1994.

    Google Scholar 

  50. Moser J.: On Harnack’s Theorem for elliptic differential equations. Comm. Pure Appl. Math. 14, 1961, 577–591.

    Article  MathSciNet  MATH  Google Scholar 

  51. Moser J.: A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 16, 1964, 101–134

    Article  Google Scholar 

  52. Moser J.: A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 20, 1967, 231–236.

    Article  MathSciNet  MATH  Google Scholar 

  53. Moser J.: On a pointwise estimate for parabolic differential equations. Comm. Pure Appl. Math. 24, 1971, 727–440.

    Article  MathSciNet  MATH  Google Scholar 

  54. Nagel A., Stein E. and Wainger S.: Balls and metrics defined by vector fields. Acta Math. 155, 1985, 103–147.

    Article  MathSciNet  MATH  Google Scholar 

  55. Nash J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 1958, 931–953.

    Article  MathSciNet  MATH  Google Scholar 

  56. Oleinik O. and Radkevic E.: Second order equations with nonnegative characteristic form. American Math. Soc, Providence, 1973.

    Book  Google Scholar 

  57. Pini B.: Sulla soluzione generalizzata di Wiener per il primo problema di valori al contorno nel caso parabolico. Rend. Sem. Mat. Padova, 23, 1954, 422–434.

    MathSciNet  MATH  Google Scholar 

  58. Porper F. O. and Eidel’man S.D.: Two-sided estimates of fundamental solutions of second- order parabolic equations, and some applications. Russian Math. Surveys, 39, 1984, 119–178.

    Article  MathSciNet  MATH  Google Scholar 

  59. Safonov M.N.: Harnack’s inequality for elliptic equations and Holder property of their solutions. J. Soviet Math. 21, 1983, 851–863.

    Article  MATH  Google Scholar 

  60. Saloff-Coste L.: Analyse sur les groupes de Lie à croissance polynômiale. Ark. För Mat. 28, 1990, 315–331.

    Article  MathSciNet  MATH  Google Scholar 

  61. Saloff-Coste L.: Opérateurs uniformèment elliptiques sur les variétés riemanniennes. C. R. Acad. Sci. Pans, Série I, Math. 312, 1991, 25–30.

    MathSciNet  MATH  Google Scholar 

  62. Saloff-Coste L.: Uniformly elliptic operators on Riemannian manifolds. J. Diff. Geo. 36, 1992, 417–450.

    MathSciNet  MATH  Google Scholar 

  63. Saloff-Coste L.: A note on Poincaré, Sobolev, and Harnack inequality. Duke Math. J., I.M.R.N. 2, 1992, 27–38.

    MathSciNet  Google Scholar 

  64. Saloff-Coste L. and Stroock D.: Opérateurs uniformèment sous-elliptiques sur les groupes de Lie. J. Funt. Anal. 98, 1991, 97–121.

    Article  MathSciNet  MATH  Google Scholar 

  65. Sturm K-T.: On the geometry defined by Dirichlet forms. Preprint, 1993.

    Google Scholar 

  66. Sturm K-T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativness and L p- Liouville properties. To appear in J. Reine Angew. Math. 1994.

    Google Scholar 

  67. Sturm K-T.: Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for fundamental solutions of parabolic equations. To appear in Osaka J. Math. 1994.

    Google Scholar 

  68. Sturm K-T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality. Preprint, 1994.

    Google Scholar 

  69. Serrin J.: On the Harnack inequality for linear elliptic differential equations. J. Anal. Math. 4, 1954–1956, 292–308.

    Article  MathSciNet  Google Scholar 

  70. N. Trudinger: On Harnack type inequalities and their application to quasilinear elliptic equations. Comm. Pure Appl. Math, 20, 1967, 721–747.

    Article  MathSciNet  MATH  Google Scholar 

  71. N. Trudinger: Pointwise estimates and quasilinear parabolic equations. Comm. Pure Appl. Math, 21, 1968, 205–226.

    Article  MathSciNet  MATH  Google Scholar 

  72. N. Trudinger: Linear elliptic operators with measurable coefficients. Ann. Scuola Norm. sup. Pisa, 27, 1973, 265–308.

    MathSciNet  MATH  Google Scholar 

  73. Vaxopoulos N.: Fonctions harmoniques sur les groupes de Lie. C. R. Acad. Sci. Paris, Série I, Math. 309, 1987, 519–521.

    Google Scholar 

  74. Varopoulos N.: Analysis on Lie groups. J. Funt. Anal. 76, 1988, 346–410.

    Article  MathSciNet  MATH  Google Scholar 

  75. Varopoulos N.: Small time Gaussian estimates of the heat diffusion kernel, Part 1: the semi- group technique. Bull Sci. Math. 113, 1989, 253–277.

    MathSciNet  MATH  Google Scholar 

  76. Varopoulos N.: Opérateurs sous-elliptique du second ordre. C. R. Acad. Sci. Paris, 308, Serie I, 1989, 437–440.

    MathSciNet  MATH  Google Scholar 

  77. Varopoulos N., Saloff-Coste L. and Coulhon Th.: Analysis and geometry on groups. Cambridge Universty Press, 1993.

    Book  Google Scholar 

  78. Yau S-T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure. Appl. Math. 28, 1975, 201–228.

    Article  MathSciNet  MATH  Google Scholar 

  79. Yau S-T. Isoperimetric constants and the first eigenvalue of a compact Riemannian manifold. Ann. Sci. Ec. Norm. Sup. Paris, 8 1975, 487–507.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Saloff-Coste, L. (1995). Parabolic Harnack inequality for divergence form second order differential operators. In: Biroli, M. (eds) Potential Theory and Degenerate Partial Differential Operators. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0085-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0085-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4042-6

  • Online ISBN: 978-94-011-0085-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics