Skip to main content

The Quantitative Microstructure-Property Correlations of Composite and Porous Materials: An Engineering Tool for Designing New Materials

  • Conference paper
IUTAM Symposium on Microstructure-Property Interactions in Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 37))

Abstract

This paper reports theoretical and experimental work carried out in the field of microstructure-property correlations of porous and composite materials. It deals with the aim, to get a better scientific insight into the effects of microstructure on the properties of multiphase materials and to use the results technologically for designing purposes. In this context porous materials are considered to be the limiting case of multiphase materials, when one phase becomes gaseous. Equations for the mechanical properties of two phase materials are presented and the theory of the microstructure-property correlation via microstructural modelling is described. To satisfy the demand of maximun reliability from a theoretical as well as practical point of view, no fitting factors have been introduced into the equations and the properties of a matrix type composite (porous) material remain only dependent on the microstructural features and the concentration of the included phase. Finally, the case of the thermal shock resistance of porous ceramics is presented as an example of application of the microstructure-property correlations to design new materials with improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nazare, S. and Ondracek, G. (1978) Zum Zusammenhang zwischen Eigenschaften und Gefügestruktur mehrphasiger Werkstoffe. Z. Werkstofftech. 9, 140–147.

    Article  CAS  Google Scholar 

  2. Bossen, J. (1993) Zur Haftung von Verbundwerkstoffen im festen Aggregatzustand. PhD Thesis Rheinisch-Westfälische Technische Hochschule RWTH Aachen.

    Google Scholar 

  3. Ondracek, G. (1982) Zur quantitativen Gefüge-Feldeigenschafts-Korrelation mehrphasiger Werkstoffe. Metall 36, 523.

    CAS  Google Scholar 

  4. Ondracek, G. (1987) The quantitative microstaicture field property correlation of multiphase and porous materials. Reviews on Powder Metallurgy and Physical Ceramics 3, 205–322.

    Google Scholar 

  5. Ondracek, G. (1986) Microstructure-thermomechanical-property correlations of two phase and porous materials. Mat. Chem. Phys. 15 281–312.

    Article  CAS  Google Scholar 

  6. Kreuzberger, S. (1993) Zum Grenzwertkonzept für mechanische und thermochemische Eigenschaften mehrphasiger Werkstoffe. PhD Thesis RWTH Aachen.

    Google Scholar 

  7. Boccaccini, A. R. (1994) Zur Abhängigkeit der mechanischen Eigenschaften zweiphasiger und poröser Werkstoffe von der Gefüge- bzw. Porositätsstruktur. PhD Thesis, Rheinisch-Westfälische Technische Hochschule RWTH Aachen.

    Google Scholar 

  8. Hashin, Z. (1983) Analysis of composite materials. A survey. J. Appl. Mech. 50, 481–505.

    Article  Google Scholar 

  9. Mazilu, P and Ondracek, G. (1989) On the effective Young’s modulus of elasticity for porous materials. Part I: The general model equation, in K. Herrmann and Z. Olesiak (eds.). Thermal Effects in Fracture of Multiphase Materials. Proc. Euromech. Colloquium 255. Springer Verlag Heidelberg Tokyo New York pp. 214–230.

    Google Scholar 

  10. Boccaccini, A. R., Ondracek, G., et al. (1993) On the effective Young’s modulus of elasticity for porous materials: microstructure modelling and comparison between calculated and experimental values. J. Mech. Behav. Mat. 4, 119–126.

    CAS  Google Scholar 

  11. Ondracek, G. (1978) Zum Zusammenhang zwischen Eigenschaften und Gefügestruktur mehrphasiger Werkstoffe. Teil III. Z. Werkstofftech. 9 31–36.

    Article  Google Scholar 

  12. Walsh, J. B., et al. (1965) Effect of porosity on compressibility of glass. J. Am. Ceram. Soc. 48, 605–608.

    Article  CAS  Google Scholar 

  13. Arnold, M., Boccaccini, A. R. and Ondracek, G. (1994) Prediction of the Poisson’s ratio of porous materials. Submitted to J. Mat. Sci.

    Google Scholar 

  14. Ramakrishnan, N. and Arunachalam, V. S. (1993) Effective elastic moduli of porous ceramic materials. J. Am. Ceram. Soc. 76, 2745–2752.

    Article  CAS  Google Scholar 

  15. Boccaccini, A. R. and Ondracek, G. (1993) On the porosity dependence of the Poisson’s ratio in ceramics. Ceramica Acta 5, 61–66.

    Google Scholar 

  16. Griffiths, T. J., Davies, R. and Basset, M. B. (1979) Analytical study of effects of pore geometry on tensile strength of porous materials. Powd. Metall. 22, 119–123.

    CAS  Google Scholar 

  17. Sadowsky, M. A. Sternberg, E. (1949) Stress concentration around a triaxial ellipsoidal cavity. J. Appl. Mech. 16 149–155.

    Google Scholar 

  18. Boccaccini, A. R. and Ondracek, G. (1993) On the porosity dependence of the fracture strength of ceramics, in P. Durán and J. F. Fernandez (eds.). Third Euro-Ceramics 3, 895–900.

    Google Scholar 

  19. Borom, M. P. (1977) Dispersion-strengthened glass matrices - glass-ceramics, A case in point. J. Am. Ceram. Soc. 60, 17–21.

    Article  CAS  Google Scholar 

  20. Hasselman, D. P. H. (1970) Thermal stress resistance parameters for brittle refractory ceramics: a Compendium. Am. Ceram. Soc. Bull. 49, 1033–1037.

    Google Scholar 

  21. Winkelmann, A., Schott, O. (1894) Über thermischen Widerstandskoeffizienten verschiedener Gläser in ihrer Abhängigkeit von der chemischen Zusammensetzung. Ann. Phys. und Chemie 51, 730.

    Article  Google Scholar 

  22. Boccaccini, A. R. and Ondracek, G. (1993) Erhöhung der Thermoschockbcständigkeit von Sinterglas und Keramik über das Verbundwerkstoffkonzept. Mat.-wiss. u. Werkstofftech. 24, 450–456

    Article  CAS  Google Scholar 

  23. Salmang, H. and Scholze, H. (1982) Keramik. Springer Verlag, p. 253.

    Google Scholar 

  24. Jauch, U. (1988) Zur Thcrmoschockfcstigkeit mehrphasiger Werkstoffe. PhD Thesis, Rheinisch-Westfälische Technische Hochschule RWTH Aachen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Boccaccini, A.R., Ondracek, G. (1995). The Quantitative Microstructure-Property Correlations of Composite and Porous Materials: An Engineering Tool for Designing New Materials. In: Pyrz, R. (eds) IUTAM Symposium on Microstructure-Property Interactions in Composite Materials. Solid Mechanics and Its Applications, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0059-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0059-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4031-0

  • Online ISBN: 978-94-011-0059-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics