Skip to main content

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 37))

Abstract

In two-phase materials such as fiber-reinforced composites, the effective behavior of the material is determined not only by the properties of the constituents, but also by their geometry and their arrangement in the composite — the microstructure of the material [1]. When calculating effective properties and local stress or strain fields, it is therefore important to consider the effect of modelling assumptions concerning the microstructure. In analytical approaches, the information on the composite’s microstructure is contained implicitely in certain model parameters. For example, in the Halpin-Tsai equations, the empirical fitting parameter is a function of the Poisson’s ratio and of the reinforcing phase’s geometry [2]. For analyses by finite elements (FE), the microstructure is defined explicitely by the FE mesh. A certain degree of idealization is necessary to keep the problem computationally tractable. This leads to the definition of a model material that is usually not representative of reality. On the other hand, a composite with a “random” fiber distribution is hard to define and a given distribution can be fairly arbitrary. A further difficulty lies in describing local concentrations of fibers or resin. However, certain models do describe experimental data better than others. This was shown by Adams and Tsai, who studied random fiber packings based on periodic arrays of possible fiber positions [1]. Coming closer to observed microstructures, Pyrz has explored ways to quantitatively describe the microstructure of unidirectional composites and the influence it can have on the material properties [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. F. and Tsai, S. W., The influence of random filament packing on the transverse stiffness of unidirectional composites, Journal of Composite Materials, Vol. 3, p. 368–381, 1969.

    Article  Google Scholar 

  2. Halpin, J. C. and Kardos, J. L., The Halpin-Tsai equations: a review, Polymer Engineering and Science, Vol. 16, No. 5, p. 344–352, 1976.

    Article  CAS  Google Scholar 

  3. Pyrz, R., Correlation of microstructure variability and local stress field in two-phase materials, Materials Science and Engineering, Vol. A177, p. 253–259, 1994.

    Article  Google Scholar 

  4. Hashin, Z., Viscoelaslic fiber reinforced materials, AIAA Journal, Vol. 4, No. 8, p. 1411–1417, 1966.

    Article  CAS  Google Scholar 

  5. Hashin, Z., Complex moduli of viscoelaslic composites II: Fiber reinforced materials, Solids Structures, Vol. 6, p. 797–807, 1970.

    Article  Google Scholar 

  6. Ek, C.-G., Kubat, J., and Rigdahl, M., Stress relaxation, creep, and internal stresses in high density polyethylene filled with calcium carbonate, Rheologica Acta, Vol. 26, p. 55–63, 1987.

    Article  CAS  Google Scholar 

  7. Horoschenkoft, A., Characterization of the creep compliances J22 and J66 of orthotropic composites with PEEK and epoxy matrices using the nonlinear viscoelaslic response of the neat resins, Journal of composite Materials, Vol. 24, p. 879–891, 1990.

    Article  Google Scholar 

  8. Lou, Y. C. and Schapery, R. A., Viscoelastic characterization of a nonlinear fiber-reinforced plastic, Journal of Composite Materials, Vol. 5, p. 208–234, 1971.

    Article  CAS  Google Scholar 

  9. Hashin, Z., Humphreys, E. A., and Goering, J., Analysis of thermoviscoelastic behavior of unidirectional fiber composites, Composites Science and Technology, Vol. 29, p. 103–131, 1987.

    Article  CAS  Google Scholar 

  10. Aboudi, J., Micromechanical characterization of the non-linear viscoelastic behavior of resin matrix composites, Composites Science and Technology, Vol. 38, p. 371–386, 1990.

    Article  Google Scholar 

  11. Schaffer, B. G. and Adams, D. F., Nonlinear viscoelaslic analysis of a unidirectional composite material, Journal of Applied Mechanics, Vol. 48, p. 859–865, 1981.

    Article  CAS  Google Scholar 

  12. Dragone, T. L. and Nix, W. D., Geometric factors affecting the internal stress distribution and high temperature creep rate of discontinuous fiber reinforced metals, Acta Metallica et Materialia, Vol. 38, No. 10, p. 1941–1953, 1990.

    Article  Google Scholar 

  13. Adams, D. F. and Doner, D. R., Transverse normal loading of a unidirectional composite, Journal of Composite Materials, Vol. 1, p. 152–164, 1967.

    Article  Google Scholar 

  14. Devries, F. and Léné, F., Homogénéisation à contraintes macroscopiques imposées: implémentation numérique et application, La Recherche Aérospatiale, Vol. 1, p. 33–51, 1987.

    Google Scholar 

  15. Bertilsson, H., Delin, M., Klason, C., Kubat, M. J., Rychwalski, W. R., and Kubat, J., Volume changes during flow of solid polymers, Relaxations in Complex Systems, Alicante, 1993.

    Google Scholar 

  16. Rigbi, Z., The value of Poissons ratio of viscoelastic materials, Applied Polymer Symposia, Vol. 5, p. 1–8, 1967.

    Google Scholar 

  17. Nicolais, L., Guerra, G., Migliarcsi, C., Nicodemo, L., and Benedetto, A. T. D., Viscoelastic Behavior of Glass-Reinforced Epoxy Resin, Polymer Composiles, Vol. 2, No. 3, p. 116–120, 1981.

    Article  Google Scholar 

  18. Brinson, L. C. and Knauss, W. G., Finite element analysis of multiphase viscoelaslic solids, Journal of Applied Mechanics, Vol. 59, p. 730–737, 1992.

    Article  Google Scholar 

  19. Rosen, B. W. and Hashin, Z., Analysis of Material Properties, Engineered Materials Handbook, Vol. 1: Composites, ASM International: Metals Park, OH, USA, p. 185–205, 1987.

    Google Scholar 

  20. Howard, C. M. and Hollaway, L., The characterization of the nonlinear viscoelastic properties of a randomly orientated fibre/matrix composite, Composites, Vol. 18, No. 4, p. 317–323, 1987.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kim, P., Toll, S., Månson, JA.E. (1995). Micromechanical Analysis of the Viscoelastic Behaviour of Composites. In: Pyrz, R. (eds) IUTAM Symposium on Microstructure-Property Interactions in Composite Materials. Solid Mechanics and Its Applications, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0059-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0059-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4031-0

  • Online ISBN: 978-94-011-0059-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics