Skip to main content

Part of the book series: Fluid Mechanics and its Applications ((FMIA,volume 31))

Abstract

The past decade has shown a surge in the interest in real fluid effects on wave propagation processes with special emphasis on phenomena caused by large values of the specific heats. These studies have revealed a remarkable number of (antiintuitive) results which are of basic scientific importance and also bear the potential for novel practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bethe, H.A. (1942) The theory of shock waves for an arbitrary equation of state, Office Sci.Res. & Dev.Rep. 545.

    Google Scholar 

  2. Borisov, A.A., Borisov, Al.A. Kutateladze, S.S. and Nakoryakov, V.E. (1983) Rarefaction shock wave near the critical liquid-vapour point. J. Fluid Mech. 126, pp. 59–73.

    Article  ADS  Google Scholar 

  3. Boukari, H., Shaumeyer, J.N., Briggs, M.E., Gammon, R.W. (1990) Critical speeding up in pure fluids, Physical Review A, 41, 4, pp 2260–2263.

    Article  ADS  Google Scholar 

  4. Cramer, M.S. (1989) Negative Nonlinearity in Selected Fluorocarbons, The Physics of Fluids A1, pp 1894–1897.

    ADS  Google Scholar 

  5. Cramer, M.S. and Kluwick A. (1984) On the propagation of waves exhibiting both positive and negative nonlinearity. J.Fluid Mech. 142, pp. 9–37.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Cramer, M.S. and Crickenberger, A.B. (1991) The Dissipative Structure of Shock Waves in Dense Gases. J. Fluid Mech. 223, pp. 325–355.

    Article  ADS  MATH  Google Scholar 

  7. Dettleff, G., Thompson, P.A., Meier, G.E.A. and Speckmann, H.-D. (1979) An experimental study of liquefaction shock waves, J. Fluid Mech. 95, pp. 279–304.

    Article  ADS  Google Scholar 

  8. Gulen, S.C., Thompson, P.A. and Cho, H.J. (1990) Rarefaction and Liquefaction Shock Waves in Regular and Retrograde Fluids with Near-Critical End States, in: G.E.A. Meier, P.A. Thompson (Eds): Adiabatic Waves in Liquid-Vapor-Systems, Springer Verlag, pp. 281–290.

    Google Scholar 

  9. Gulen, S.C. and Thompson, P.A. (1994) private communication.

    Google Scholar 

  10. Kluwick, A. (1991) Weakly nonlinear kinematic waves in suspensions of particles in fluids, Acta Mechanica 88, pp. 205–217.

    Article  Google Scholar 

  11. Kluwick, A. (1993) Transonic nozzle flow of dense gases, J. Fluid Mech. 247, pp. 661–688.

    Article  ADS  MATH  Google Scholar 

  12. Kluwick, A. (1994) A note on the small amplitude limit of the Korteweg theory for waves with phase transition, in preparation

    Google Scholar 

  13. Kluwick, A., Czemetschka, E. (1989) Kugel-und Zylinderwellen in Medien mit positiver und negativer Nichtlineantaet, ZAMM 70, 4, pp. T207–T208.

    Google Scholar 

  14. Kluwick, A. and Cox, E.A. (1992) Propagation of weakly nonlinear waves in stratified media having mixed nonlinearity, J. Fluid Mech. 244, pp. 171–185.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Kluwick, A. and Scheichl, St. (1994) Unsteady transonic nozzle flow of dense gases, in preparation

    Google Scholar 

  16. Korteweg, D.J. (1901) Sur 1a forme que prennent les equations du mouvement des fluids si l’on tient compte des forces capillaires par des variationes de densité, Archives Néerlandaises des Sciences Exactes et Naturelles.

    Google Scholar 

  17. Nakoryakov, V.E., Pokusaev, B.G. and Shreiber, I.R. (1993) Wave Propagation in Gas-Liquid Media, CRC Press, 2nd edition.

    Google Scholar 

  18. Oleinik, O.A. (1959) Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation, Usp. Mat. Nauk 14, pp 165–170. (English Translation) Am. Math. Soc. Transi. Ser 2, 33, pp. 285-290.

    MathSciNet  Google Scholar 

  19. Onuki, A., Hong, H., Ferrel, R.A. (1990) Fast adiabatic equilibration in a single-component fluid near the liquid-vapor critical point, Physical Review A, 41, 4, pp. 2256–2259.

    Article  ADS  Google Scholar 

  20. Schofield, P. (1969) Parametric Representation of the Equation of State near a Critical Point, Physical Review Letters 22, pp. 606–608.

    Article  ADS  Google Scholar 

  21. Serrin, J. (1983) The form of interfacial surfaces in Korteweg’s theory of phase equilibria, Quarterly of Applied Mathematics, October 1983, pp. 357–364.

    Google Scholar 

  22. Slemrod, M. (1990) Remark on the Traveling Wave Theory of Dynamical Phase Transitions, in: G.E.A. Meier, P.A. Thompson (Eds): Adiabatic Waves in Liquid-Vapor-Systems, Springer Verlag, pp. 325–337.

    Google Scholar 

  23. Thompson, Ph.A. (1971) A Fundamental Derivative in Gasdynamics. The Physics of Fluids 14, pp. 1843–1849.

    Article  ADS  MATH  Google Scholar 

  24. Thompson, Ph.A. and Lambrakis, K.C. (1973) Negative Shock waves, J. Fluid Mech. 60, pp. 187–207.

    Article  ADS  MATH  Google Scholar 

  25. Thompson, P.A., Chaves, H., Meier, G.E.A., Kim, Y.G. and Speckmann, H.D. (1987) Wave splitting in a fluid of large heat capacity. J. Fluid Mech. 185, pp. 385–414.

    Article  ADS  Google Scholar 

  26. Widom, B. (1965) Equation of State in the Neighbourhood of the Critical Point, The Journal of Chemical Physics 43, pp. 3898–3905.

    Article  ADS  Google Scholar 

  27. Zappoli, B., Bailly, D., Garrabos, Y., Le Neindre, B., Guenoun, P., Beysens, D. (1990) Anomalous heat transport by the Piston Effect in supercritical fluids under zero gravity, Physical Review A, 41,4, pp. 2264–2267.

    Article  ADS  Google Scholar 

  28. Ze’dovich, Ya.B. (1946) On the possibility of rarefaction shock waves, Zh. Eksp. Teor. Fiz. 4, pp. 363–364.

    Google Scholar 

  29. Zauner, E., Meier, G.E.A. (1990) Phase changes of a large-heat-capacity fluid in transcritical expansion flows, in: G.E.A. Meier, P.A. Thompson (Eds): Adiabatic Waves in Liquid-Vapor-Systems, Springer Verlag, pp. 103–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kluwick, A. (1995). Adiabatic Waves in the Neighbourhood of the Critical Point. In: Morioka, S., Van Wijngaarden, L. (eds) IUTAM Symposium on Waves in Liquid/Gas and Liquid/Vapour Two-Phase Systems. Fluid Mechanics and its Applications, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0057-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0057-1_33

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4030-3

  • Online ISBN: 978-94-011-0057-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics