Skip to main content

Finite Duration Rifting, Melting and Subsidence at Continental Margins

  • Chapter
Rifted Ocean-Continent Boundaries

Part of the book series: NATO ASI Series ((ASIC,volume 463))

Abstract

When continental lithosphere is thinned during rift.in g. basall ic melt is generated by decompression of anhydrous mantle if the geotherm intersects the a nhydrous manl le solidus. The qu antity of melt generated depends on four principal factors: the degree of lilhospheric thinning; the potential temperature of the asthenospheric mantle; the thickness of the lithosphere prior to rifting; and t he duration of rifting. Subsidence at rifted continental margins can affected significantly by melt generation during rifting: mantle melting causes reduced subsidence because both the igneous rock added to t he crust and the residual mantle are less dens. then the original mantle. At ‘volcanic’ rifted margins subsidence is also affected by the relative uplift resulting from isostatic compensation of the underlying mantle whose density is reduced hy the thermal anomaly caused by the mantle plume. We present results from a uniform pure-shear lithospheric stretching model for melt generation and for subsidence at continental margins rifted at realistic finite rates. Predict ions from the model are compared with observations of melt generation and Subsidence from the ‘nonvolcanic’ Galicia Bank rifted margin and from the ‘volcanic’ Rockall Platieau rifted margin in the North Atlantic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arndt, N.T., & U. Christensen, 1992. The role of lithospheric mantle in continental flood volcanism: Thermal and geochemical constraints, J. Geophys. Res. 97, 10967–10981.

    Article  Google Scholar 

  • Barton, P.,& R. Wood, 1984. Tectonic evolution of the North Sea basin: crustal stretching and subsidence, Geophys. J. R. astr. Soc., 79, 987–1022.

    Google Scholar 

  • Boillot, G., E.I, Winterer, A.W. Meyer, et al, 1987. Proc. Ocean Drill. Program, Init. Repts., 103, College Station, TX (Ocean Drilling Program).

    Google Scholar 

  • Boillot, G., E.l, Winterer, et al., 1988. Proc, Ocean Drill. Program. Sci. Results. 103, College Station, TX (Ocean Drilling Program).

    Google Scholar 

  • Boillot, G., G. Féraud. M. Recq, & J. Girardeau, 1989. Undercrnsting by serpentinite beneath rifted margins. Nature, 341, 523–525.

    Article  Google Scholar 

  • Bown, J.W., 1991. Melting and subsidence at rifts, Ph.D. dissertation (unpublished), University of Cambridge, pp. 238.

    Google Scholar 

  • Bown, J.W., & R.S. White, 1994. Variation with spreading rate of oceanic crustal thickness and geochemistry, Earth Planet. Sci. Lett., 121, 435 419.

    Google Scholar 

  • Bown, J.W., & R.S. White, 1995. The effect of finite extension rate on melt generation at rifted continental margins, J. Geophys. Res., 100, in press.

    Google Scholar 

  • Courtney, R.C. & R.S. White, 1986. Anomalous heat flow and geoid across the Cape Verde Rise: Evidence for dynamic support from a thermal plume in the mantle. Geophys. J. R. astr. Soc. 87. 815–867, and microfiche GJ 87/1.

    Article  Google Scholar 

  • Dane, E.D., 1941. Densities of molten rocks and minerals. Am.J. Sci. 239. S09–818.

    Article  Google Scholar 

  • Eldholm, O, J. Thiede, E. Taylor, et alM. 1987. Proc. Ocean Drill Program. Init. Repts., 104, College Station, TX (Ocean Drilling Program).

    Google Scholar 

  • Eldholm, O., J. Thiede, E. Taylor, et al., 1989. Proc. Ocean Drill. Program. Sci. Results, 104 College Station, TX (Ocean Drilling Program).

    Google Scholar 

  • Eldholm, O, J. Thiede & E. Taylor, 1989. Evolution of t lie Vorin» volcanic margin, Proc. Ocean Drill. Program, Sci. Results, 104, 1033–1065.

    Google Scholar 

  • Fowler, S.& D. McKenzie, 1989. Gravity studies of the Kockall and Exmouth Plateaux using SEAS AT altimetry, Basin Research, 2, 27–34.

    Article  Google Scholar 

  • Fowler, S.R., R.S. White, G.D. Spence & G.K. Westbrook. 1989. The Hat ton Bank continental margin. II. Deep structure from two-ship expanding spread profiles Geophys J 96, 295–309.

    Article  Google Scholar 

  • Fram. M.S, & C.E. Lesher. 1993. Geochemical constraints on mantle melting during creation of the North Atlantic basin, Nature, 363, 712–715.

    Article  Google Scholar 

  • Fukuyama, H., 1985. Heat of fusion of basaltic magma. Earth Planet. Sci. Lett., 73 407–414.

    Article  Google Scholar 

  • Griffiths, R.W. & I.H. Campbell, 1990. Stirring and structure in mantle starting plumes, Earth Planet, Sci. Lett., 99, 66–78.

    Article  Google Scholar 

  • Harland, W.B., R.L. Armstrong, A.V. Cox, L. Craig, A.G. Smith & D.G. Smith, 1990. A Geological Timescale 1989, Cambridge University Press, Cambridge.

    Google Scholar 

  • Herzberg, C.T., W.S. Fyfe & M.J. Carr, 1983. Density constraints on the formation of the continental Moho and crust, Contr. Miner. Petrol., 84, 1–5.

    Article  Google Scholar 

  • Hill, R.I, 1991. Starting plumes and continental break-up, Earth Planet. Sci. Lett., 104, 398–416.

    Article  Google Scholar 

  • Horsefield, S.J., 1992. Crustal structure across the continent-ocean boundary, Ph.D. dissertation (unpublished), University of Cambridge, pp. 215.

    Google Scholar 

  • Jarvis, G.T., & D.P. McKenzie, 1980. Sedimentary basin formation with finite extension rates, Earth Planet. Sci. Lett., 48, 42–52.

    Google Scholar 

  • Klein, E.M., & C.H. Langmuir, 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness, J. Geophys. Res., 92, 8089–8115.

    Article  Google Scholar 

  • Larsen, H.C., 1984. Geology of the East Greenland shelf, in: Petroleum Geology of the North European Margin, Spencer, A.M., et al., eds., pp. 329–339, Graham & Trotman.

    Chapter  Google Scholar 

  • Le Pichon, X., & J.-C. Sibuet, 1981. Passive margins: a model of formation, J. Geophys. Res., 86, 3708–3720.

    Article  Google Scholar 

  • Loper, D.E., 1991. Mantle plumes, Tectonophys., 181, 373–384.

    Article  Google Scholar 

  • McKenzie, D., 1978. Some remarks on the development of sedimentary basins, Earth Planet. Sci. Lett., 40, 25–32.

    Google Scholar 

  • McKenzie, D., 1984. The generation and compaction of partially molten rock, J. Petrology, 25, 713–65.

    Google Scholar 

  • McKenzie, D., 1985. The extraction of magma from the crust and mantle, Earth Planet. Sci. Lett., 74, 81–91.

    Google Scholar 

  • McKenzie, D., 1989. Some remarks on the movement of small melt fraction in the mantle, Earth Planet. Sci. Lett., 95, 53–72.

    Google Scholar 

  • McKenzie, D., & M.J. Bickle, 1988. The volume and composition of melt generated by extension of the lithosphere, J. Petrology, 29, 625–679.

    Google Scholar 

  • Merriman, R.J., P.N. Taylor & A.C. Morton, 1988. Petrochemistry and isotope geochemistry of early Palaeogene basalts forming the dipping reflector sequences SW of Rockall Plateau, NE Atlantic, in: Early Tertiary Volcanism and the Opening of the NE Atlantic, Spec. Publ. Geol. Soc. Lond., 39, Morton, A.C., & L.M. Parson, eds., pp. 123–134.

    Google Scholar 

  • Morgan, J.V., P.J. Barton & R.S. White, 1989. The Hatton Bank continental margin, III, Structure from wide-angle OBS and multichannel seismic refraction profiles, Geophys. J. Int., 98, 367–384.

    Article  Google Scholar 

  • Morton, A.C., & P.N. Taylor, 1987. Lead isotope evidence for the structure of the Rockall dipping-reflector passive margin, Nature, 326, 381–383.

    Article  Google Scholar 

  • Moullade, M., M.-F. Brunet & G. Boillot, 1988. Subsidence and deepening of the Galicia margin: The paleoenvironmental control, Proc. Ocean Drill. Program, Sci. Results, 103.

    Google Scholar 

  • Murray, J.W., 1984. Paleogene and Neogene benthic foraminiferas from Rockall Plateau, Initial Rep. Deep Sea Drill. Proj., 81, 503–534.

    Google Scholar 

  • ODP Leg 103 Shipboard Scientific Party, 1987. Introduction, objectives, and principal results: ocean drilling program Leg 103, West Galicia margin, Proc. Ocean Drill. Program, Init. Repts., 103, 3–17.

    Google Scholar 

  • ODP Leg 152 Shipboard Party, 1994. Drilling unearths “Fire and Ice” at Southeast Greenland Margin, EOS Trans. Am. Geophys. Un., 75, 401–406.

    Article  Google Scholar 

  • Oxburgh, E.R., & E.M. Parmentier, 1977. Compositional and density stratification in the oceanic lithosphere - causes and consequences, J. Geol. Soc. Lond., 133, 343–354.

    Article  Google Scholar 

  • Parsons, B.& J.G. Sclater, 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age, J. Geophys. Res., 82, 803–827.

    Article  Google Scholar 

  • Pedersen, T, & H.E. Ro, 1992. Finite duration extension and decompression melting Earth Planet. Sci. Lett., 113, 15–22.

    Google Scholar 

  • Ringwood, A.E. 1975. Composition and Petrology of the Earth’s Mantle. McGraw-Hill New York, N.Y.

    Google Scholar 

  • Roberts, D.G., D. Schnitker, et al, 1984. Initial Rep. Deep Sea Drill. Proj., 81. Washington (U.S. Government Printing Office), 1984.

    Google Scholar 

  • Roberts, D.G., J. Backman, A.C. Morton, J.W. Murray & J.B. Keene, 1984. Evolution of volcanic rifted margins: Synthesis of Leg 81 results on the west margin of Rockall Plateau, Initial Rep. Deep Sea Drill. Proj., 81, 913–923.

    Google Scholar 

  • Royden, L., & C.E. Keen. 1980. Rifting process and thermal evolution of the continental margin of eastern Canada determined from subsidence data. Earth Planet Sci lett 51 343–361.

    Article  Google Scholar 

  • Schmoker, J.W., & R.B. Halley, 1982. Carbonate porositv versus depth. Am Assoc Petroleum Geologists Bull., 66, 2561–2570.

    Google Scholar 

  • Sleep, N.H., 1994. Lithospheric thinning by midplate mantle plumes and the thermal history of hot Plume material ponded at sublithospheric depths J. Geophys. Res., 99 9327–9343.

    Article  Google Scholar 

  • Sclater, J.G. & P.A.F. Christie, 1980. Continental stretching: An explanation of the post - mid - Cretaceous subsidence of the central North Sea Basin. J. Geophys. Res., 85, 3711–3739.

    Article  Google Scholar 

  • Spence, G.D., R.S. White, G.K. West brook, & S.R. Fowler. 1989. The Hat ton Bank continental margin, I, Shallow structure from two-ship expanding.spread seismic profiles Geophys. J., 96. 273–294.

    Article  Google Scholar 

  • Steckler, M.S., & A.B. Watts, 1978. Subsidence of the Atlat.1 ic-tvpe continental margin off New York, Earth Planet. Sci. Lett., 44, 1–13.

    Article  Google Scholar 

  • von Herzen, R.P., R.S. Detrick, S.T. Crough. D. Epp & T. Fehn. 1982. Thermal origin the Hawaiian swell: Heat flow evidence and thermal models. J. Geophys. Res., 87 6711–6723.

    Article  Google Scholar 

  • Watson.S & D. McKenzie, 1991. Melt generation bv plumes: A studv of Hawaiian volcanism, J. Petrology, 32, 501–537.

    Google Scholar 

  • Watts, A.B., 1988. Gravity anomalies, crystal structure and flexure of the lithosphere at the Baltimore Canyon Trough, Earth Planet. Sci. Lett. 89. 21–238.

    Article  Google Scholar 

  • Watts, A.B., & M.Torné, 1992. Crustal structure and the mechanical properties of extended continental lithosphere in the Valencia trough (western Mediterranean) J. Geol. Soc. Lond., 149, 813–827.

    Article  Google Scholar 

  • White. N., 1991. Does the uniform stretching model work in the North Sea?, in: The Structure and Evolution of the North Sea, Blundell. D.J., & A.D. Gibbs eds., Oxford Scientific Publications. Clarendon Press, Oxford, 217–235.

    Google Scholar 

  • White, R.S., 1992a, Crustal structure and magmatism of North Atlantic continental margins, J. Geol. Soc. Lond., 149, 841 854.

    Google Scholar 

  • White, R.S., 1992b. Magmatism during and after continental break-up, in: Magmatism and the Causes of Continental Break-up, Spec. Puhl. Geol. Soc. Lond., 68. Storey, B.C. T. Alabaster & R.J. Pankhurst, eds., pp. 1–16.

    Google Scholar 

  • White. R.S., 1993. Melt production rates in mantle plumes. Phil. Trans. Rov. Soc., London, Series A, 342. 137–153.

    Article  Google Scholar 

  • White, R., & D. McKenzie, 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729.

    Google Scholar 

  • White, R.S., & D. Mc Kenzie, 1995. Mantle plumes and flood basalts, J. Geophys. Res., 100, in press.

    Google Scholar 

  • White, R.S, J.W. Bown & J.R. Smallwood, 1995. The shape of the Iceland mantle plume, J. Geol. Soc. Lond., in press.

    Google Scholar 

  • White, R.S, G.K. Westbrook, A.N. Bowen, S.R. Fowler, G.D. Spence, C. Prescott, P.J. Barton, M. Joppen, J. Morgan & M.H.P. Bott, 1987. Hatton Bank (northwest U.K.) continental margin structure, Geophys. J. R. astr. Soc., 89, 265–272.

    Article  Google Scholar 

  • Whitmarsh, R.B., L.M. Pinheiro, P.R. Miles, M. Recq & J-.C. Sibuet, 1993. Thin crust at the western Iberia ocean-continent transition and ophiolites, Tectonics, 12, 1230–1239.

    Article  Google Scholar 

  • Whitmarsh, R.B., R.S. White, J.-C. Sibuet, S.J. Horsefield & M. Recq, in prep. The ocean- continent boundary off the western continental margin of Iberia - III. Crustal structure across the Galicia Bank Margin, Geophys. J. Int.

    Google Scholar 

  • Wooler, D.A., A. Smith & N. White, 1992. Measuring lithospheric stretching on the margins of Tethys, J. Geol. Soc. Lond, 149, 517–532.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bown, J.W., White, R.S. (1995). Finite Duration Rifting, Melting and Subsidence at Continental Margins. In: Banda, E., Torné, M., Talwani, M. (eds) Rifted Ocean-Continent Boundaries. NATO ASI Series, vol 463. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0043-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0043-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4024-2

  • Online ISBN: 978-94-011-0043-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics