Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 463))

Abstract

Volcanic margins are part of a tectono-magmatic system in which the margin fonnation depends on lithospheric and asthenospheric properties before, during and after continental breakup. Whether a volcanic margin develops or not, i.e. the relative magnitude of magmatism during breakup, depends on the temperature and fluid content of the asthenosphere along the incipient plate boundary and the dynamic history of the lithosphere during the syn-rift phase. An adequate description of the system requires analysis of the entire rift. However, the literature commonly shows an emphasis on selected features rather than on a system approach which may introduce bias during interpretation and modeling. For example: I) seaward dipping reflectors, commonly considered indicative of volcanic margins, are only one element in an igneous succession emplaced during rifting and early sea floor spreading. 2) Excessive melt volumes may be generated by relatively small asthenospheric temperature anomalies (50-100°C). 3) The entire lower crustal high-velocity bodies are not “underplated”. 4) Wide-angle seismic experiments appear to overestimate the volumes of the extrusive complexes. 5) The tectono-magmatic dimensions of the NE North Atlantic Late Cretaceous-Paleocene rift challenge the concept of a “non-extensional” rifted margin. Furthermore, asymmetric tectono-magmatic settings need to be considered. 6) Up- or down-scaled “normal” continental and oceanic crustal velocity functions do not apply to the continent-ocean transition. 7) Although a hotspot may result in volcanic margin fonnation, it is not a necessary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson D.L., Zhang Y. & Taniomoto T., 1992. Plume heads, continental lithosphere, flood basalts and tomography. J. Geol. Soc. London Spec. Publ., 68, 99–124.

    Article  Google Scholar 

  • Austin J.A. & Uchupi E., 1982. Continental-oceanic transition off southwest Africa. Am. Assoc. Petrol. Geol. Bull., 66, 1328–1347.

    Google Scholar 

  • Bally A.W., 1983. Seismic expression of structural styles. Am. Assoc. Petrol. Geol., Stud. Geol., 15(2).

    Google Scholar 

  • Benson R.N. & Doyle R.G., 1988. Early Mesozoic rift basins and the development of the United States middle Atlantic continental margin. In Manspeizer W. (ed.), Triassic-Jurassic rifting continental breakup and the origin of the Atlantic passive margins. Elsevier Sci. Pubis., Amsterdam, 99–127.

    Google Scholar 

  • Biswas S.K. & Thomas J., 1992. The Deccan Traps and Indian Ocean volcanism. In Plummer P.S. (ed.), First Indian Ocean Petroleum Seminar, Dept. Tech. Coop. Development, United Nations, Seychelles, 187–209.

    Google Scholar 

  • Coffin M.F. & Eldholm O., 1994. Large Igneous Provinces: Crustal structure, dimensions, and external consequences. Rev. Geophys., 32, 1–36.

    Article  Google Scholar 

  • Coffin M.F. & O. Eldholm, 1992. Volcanism and Continental Break-up: A Global Compilation of Large Igneous Provinces. J. Geol. Soc. London Spec. Publ., 68, 21–34.

    Google Scholar 

  • Colwell J.B., Symonds P.A. & Crawford A.J., 1994. The nature of the Wallaby (Cuvier) Plateau and other igneous provinces of the west Australia margin. AGSO J. Austr Geol Geophys 15, 137–156.

    Google Scholar 

  • Courtney R.C. & White R.S, 1986. Anomalous heat flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle. Geophys. J., 87, 815–867.

    Article  Google Scholar 

  • Duncan R.A. & Richards M.A. 1991. Hotspots, mantle plumes, flood basalts, and true polar wander. Rev. Geophys., 29, 31–50.

    Article  Google Scholar 

  • Eldholm O. & Grue K., 1994. North Atlantic volcanic margins: Dimensions and Production Rates. J. Geophys. Res., 99, 2955–2968.

    Article  Google Scholar 

  • Eldholm O., Thiede J. & Taylor E., 1989. Evolution of the Vøring Volcanic Margin. In Eldholm O., Thiede, J. et al., Proc. ODP, Sci. Results, 104: College Station (Ocean Drilling Program) 1033–1065.

    Google Scholar 

  • Eldholm O., Sundvor E. & Myhre A.M., 1979. Continental margin off Lofoten-Vesterálen, Northern Norway. Mar. Geophys. Res., 4, 3–35.

    Article  Google Scholar 

  • Eldholm O., Thiede J., Taylor E. et al., 1987. Proc., ODP, Init. Repts. 104: College Station, TX (Ocean Drilling Program).

    Google Scholar 

  • Ewing J. & Houtz R., 1979. Acoustic stratigraphy and structure of the oceanic crust. Maurice Ewing Ser., Am. Geophys. Union, 2, 1–14.

    Article  Google Scholar 

  • Flovenz O.G. & Gunnarsson K., 1991. Seismic crustal structure in Iceland and surrounding area. Tectonophysics, 189, 1–17.

    Article  Google Scholar 

  • Fowler S.R., White R.S, Westbrook G.K. & Spence G.D., 1989. The Hatton Bank continental margin, II. Deep structure from two-ship expanded spread seismic profiles, Geophys J 96 295–309.

    Article  Google Scholar 

  • Furlong K.P. & Fountain D.M., 1986. Continental crustal underplating: thermal considerations and seismic petrological consequences, J. Geophys. Res., 91, 8285–8294.

    Article  Google Scholar 

  • Gibson I.L. & Gibbs A.D., 1987. Accretionary volcanic processes and the crustal structure of Iceland. Tectonophysics, 133,57–64.

    Article  Google Scholar 

  • Gladczenko T.P., 1994. Crustal structure and composition of selected transient large igneous provinces. Cand.scient. thesis Univ. Oslo, 220 pp.

    Google Scholar 

  • Griffiths R.W. & Campbell I.H., 1991. Interaction of mantle plume heads with the Earth’s surface and onset of small-scale convection. J. Geophys. Res., 96, 18295–18310.

    Article  Google Scholar 

  • Griffiths R.W. & Campbell I.H., 1990. Stirring and structure in mantle starting plumes. Earth Planet. Sci. Lett., 99, 66–78.

    Article  Google Scholar 

  • Harry D.L. & Sawyer D.S., 1992. Basaltic volcanism, mantle plumes, and the mechanics of rifting: the Paraná flood basalt province of South America., Geology, 20, 207–210.

    Article  Google Scholar 

  • Herzberg C.T., Fyfe W.S. & Carr M.J., 1983. Density constraints on the formation of the continental Moho and crust. Contrib. Mineral. Petrol., 84, 1–5.

    Article  Google Scholar 

  • Hinz K., 1981. A hypothesis on terrestrial catastrophes: Wedges of very thick oceanvvard dipping layers beneath passive margins - their origin and paleoenvironment significance. Geol. Jahrb E22, 345–363.

    Google Scholar 

  • Hinz K. & Schlüter H-U., 1978. Der Nordatlantik - ergebnisse geophysikalischer Untersuchungen der Bundesanstalt für Geowissenschaften und Rohstoffe an Nordatlantischen kontinentalrändern. Erdöl, Erdgas Z„ 94, 271–280.

    Google Scholar 

  • Hinz K. & Weber J., 1976. Zum geologischen Aufbau des Norwegischen Kontinentalrandes und der Barents-See nach reflexionsseismischen Messungen, Erdöl & Kohle, Erdgas, Petrochem., 3–29.

    Google Scholar 

  • Hinz K., Eldholm O., Block M. & Skogseid J., 1993. Evolution of N Atlantic volcanic continental. margins. In: Parker, J.R. (ed.) Petroleum geology of Northwest Europe: Proc. 4th Conf. Geol. Soc. London, 901–913.

    Chapter  Google Scholar 

  • Hinz, K., Mutter J.C., Zehnder C.M. & NGT Study Group, 1987. Symmetric conjugation of continent-ocean boundary structures along the Norwegian and East Greenland margins, Mar. Petrol. Geol., 3, 166–187.

    Article  Google Scholar 

  • Holbrook W.S. & Kelemen P.B, 1993. Large igneous province on the US Atlantic margin and implications for magmatism during continental breakup. Nature, 364, 433–436.

    Article  Google Scholar 

  • Holbrook W.S., Reiter E.C., Purdy G.M., Sawyer D., Stoffa P.L., Austin J.A., Oh J. & Makris J., 1994a. Deep structure of the U.S. Atlantic continental margin, offshore South Carolina, from coincident ocean bottom and multichannel data. J. Geophys. Res., 99, 9155–9178.

    Article  Google Scholar 

  • Holbrook W.S., Purdy G.M., Sheridan R.E., Glover L., Talwani M., Ewing J. & Hutchinson D., 1994b. Seismic structure of the U.S. Mid-Atlantic continental margin. J. Geophys. Res., 99, 17871–17891.

    Article  Google Scholar 

  • Hopper J.R., Mutter J.C., Larson R.L., Mutter C.Z. & NW Australia Study Group, 1992. Magmatism and rift margin evolution: evidence from northwest Australia. Geology, 20, 853857.

    Article  Google Scholar 

  • Keen, C.E., 1987. Some important consequences of lithospheric extension, Geol. Soc. Spec. Publ., 28, 67–73.

    Article  Google Scholar 

  • Keser Neish, J.C., Seismic structure of the Hatton-Rockall area: an integrated seismic/modelling study from composite datasets. In Parker J.R. (ed.), Petroleum Geology of Northwest Europe: Proc. 4th Conf., Geol. Soc. London, 1047–1056.

    Google Scholar 

  • Klitgord K.D., Hutchinson D.R. & Schouten H., 1988. U.S. Atlantic continental margin: structural and tectonic framework. In The Geology of North America, vol. 1–2, The Atlantic continental margin: U.S. Geological Society of America, Boulder, Colo., 19–55.

    Google Scholar 

  • Larsen H.C., 1990. The East Greenland Shelf. In The Geology of North America, vol. L, The Arctic Ocean Region. Geological Society of America, Boulder, Colo., 185–210.

    Google Scholar 

  • Larsen H.C. & Marcussen C., 1992. Sill-intrusion, flood basalt emplacement and deep crustal structure of the Scoresby Sund region, East Greenland. J. Geol. Soc. London Spec. Publ., 68, 365–386.

    Article  Google Scholar 

  • Larson R.L., 1991. Geological consequences of superplumes. Geology, 19, 963–966.

    Article  Google Scholar 

  • LASE Study Group, 1986. Deep structure of the U.S. East Coast passive margin from large aperture seismic experiments (LASE), Mar. Petrol. Geol., 3, 234–242.

    Article  Google Scholar 

  • Lawver L.A. & Müller R.D., 1994. Iceland hotspot track. Geology, 22, 311–314.

    Article  Google Scholar 

  • Leg 152 Shipboard Party, 1994. Drilling unearths “fire and ice” at southern Greenland margin. Eos, 75, 401–406.

    Article  Google Scholar 

  • Light M.P.R., Maslanyj M.P., Greenwood R.J. & Banks N.L., 1993. Seismic sequence stratigraphy and tectonics offshore Namibia. Geol. Soc. Spec. Publ., 71, 163–191.

    Article  Google Scholar 

  • Lister G.S., M.A. Etheridge & P.A. Symonds, 1991. Detachment models for the formation of passive continental margins, Tectonics, 10, 1038–1064.

    Article  Google Scholar 

  • Makris J., Ginzburg A., Shannon P.M., Jacob A.W.B., Bean C.J. & Vogt U., 1991. A new look at the Rockall region, offshore Ireland. Mar. Petrol. Geol., 8, 410–416.

    Article  Google Scholar 

  • Meissner, R., 1986. The continental crust. A geophysical approach, Academic Press.

    Google Scholar 

  • Mjelde R., Sellevoll M.A., Shimamura H., Iwasaki T. & Kanazawa T., 1993. Ocean bottom seismographs used in a crustal study of an area covered wirh flood-basalt off Lofoten, N. Norway. Terra Nova, 5, 76–84.

    Article  Google Scholar 

  • Mutter C.Z. & Mutter J.C., 1993. Variations in thickness of layer 3 dominate oceanic crustal structure. Tectonophysics, 117, 295–317.

    Google Scholar 

  • Mutter J.C., Talwani M. & Stoffa P., 1982. Origin of seaward-dipping reflectors in oceanic crust off the Norwegian margin by “subaerial seafloor spreading”, Geology, 10, 353–357.

    Article  Google Scholar 

  • Mutter J.C., Talwani M. & Stoffa P., 1984. Evidence for a thick oceanic crust adjacent to the Norwegian margin, J. Geophys. Res., 89, 483–502.

    Article  Google Scholar 

  • Myhre A.M., Eldholm O., Faleide J.I., Skogseid J., Gudlaugsson S.T., Planke S., Stuevold L.M. & Vagnes E., 1992. Norway-Svalbard Margin: Structural and Stratigraphical styles. In Poag C.W. & de Graciansky P.C. (eds.), Geologic evolution of Atlantic Continental Rises, Van Nostrand Reinhold, New York, 157–185.

    Google Scholar 

  • Olafsson I., Sundvor E., Eldholm O. & Grue K., 1992. Møre Margin: Crustal structure from analysis of Expanded Spread Profiles. Mar. Geophys. Res., 14, 137–162.

    Article  Google Scholar 

  • Pedersen T. & Skogseid J., 1989. Vøring Plateau volcanic margin: Extension, melting and uplift. In Eldholm, O., Thiede, J. Taylor, E. et al., ODP, Sci. Res., 104, College Station TX (Ocean Driling Program), 985–991.

    Google Scholar 

  • Planke S., 1994. Geophysical response of flood basalts from analysis of wireline logs: ODP Site 642, Vøring volcanic margin. J. Geophys. Res., 99, 9279–9296.

    Article  Google Scholar 

  • Planke S. & Eldholm O., 1994. Seismic response and construction of seaward dipping wedges of flood basalts: Vøring volcanic margin. J. Geophys. Res., 99, 9263–9278.

    Article  Google Scholar 

  • Planke S. & Eldholm O., 1993. Seismic properties of seaward dipping wedges of flood basalts: examples from the Vøring volcanic margin. Abstr. Geol. Soc. Am. Annual Meeting, A427.

    Google Scholar 

  • Planke S. & Flovenz O.G., 1994. Integration of downhole and surface seismic data in flood basalt terrains: implications for seismic imaging and crustal structure. Abstr. Amer. Geophys. Union Fall Meeting.

    Google Scholar 

  • Roberts D.G., Schnitker D. et al., 1994. Init. Rept. DSDP, 81, US Gov. Printing Office, Washington DC, 1984.

    Google Scholar 

  • Saemundson K., 1974. Evolution of the axial rifting zone in northern Iceland and the Tjørnes Fracture Zone, Geol. Soc. Am. Bull., 85, 495–504.

    Article  Google Scholar 

  • Schuepbach M.A. & Vail P.R., 1980. Evolution of outer highs on divergent continental margins. In Continental Tectonics, Nat. Res. Council, Washington D.C., 50–64.

    Google Scholar 

  • Skogseid J., 1994. Dimensions of the Late Cretaceous-Paleocene Northeast Atlantic rift derived from Cenozoic subsidence, Tectonophysics, 240, 225–247.

    Article  Google Scholar 

  • Skogseid J. & Eldholm O., this volume. Rifted continental margin off mid-Norway.

    Google Scholar 

  • Skogseid J. & Eldholm O., 1989. Vøring Plateau continental margin: Seismic interpretation, stratigraphy and vertical movements. In: Eldholm O., Thiede J., Taylor E. et al., Proc. ODP, Sci. Results, 104: College Station (Ocean Drilling Program), 993–1030.

    Google Scholar 

  • Skogseid J. & Planke S., in press. Seismic reflection and refraction imaging of crustal structure on NE Atlantic margins: Mesozoic continental rifting and Cenozoic volcanic margin formation. Basin Res.

    Google Scholar 

  • Skogseid J., Pedersen T. & Larsen V.B., 1992a. Voring Basin: subsidence and tectonic evolution. Norw. Petrol. Soc. Spec. Publ., 1, 55–82.

    Google Scholar 

  • Skogseid J., Pedersen T., Eldholm O. & Larsen B.T., 1992b. Tectonism and magmatism during NE Atlantic continental break-up: the Vøring Margin. J. Geol. Soc. London, Spec. Publ., 68, 305–320.

    Article  Google Scholar 

  • Talwani M., 1978. Distribution of basement under the eastern North Atlantic Ocean and Norwegian Sea. Geol. J. Spec. Issue, 5, 25–57.

    Google Scholar 

  • Talwani M. & Eldholm O., 1977. Evolution of the Norwegian-Greenland Sea. Geol. Soc. Am. Bull., 88, 969–999.

    Article  Google Scholar 

  • Talwani M. & Eldholm O., 1972. The continental margin off Norway: A geophysical study, Geol. Soc. Am. Bull., 83, 3573–3606.

    Article  Google Scholar 

  • Talwani M., Ewing J., Sheridan R.E. & Holbrook W.S., this volume. The EDGE experiment and the U.S. East Coast magnetic anomaly.

    Google Scholar 

  • Thompson R.N. & Gibson S.A., 1991. Subcontinental mantle plumes, hotspots and pre-existing thinspots. J. Geol. Soc. London, 148, 973–977.

    Article  Google Scholar 

  • Todal A., 1994. Tektono-magmatisk utvikling av Indias vestlige kontinentalmargin. Cand.scient. thesis Univ. Oslo, 133 pp.

    Google Scholar 

  • White R.S. & McKenzie D., 1989. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7729.

    Article  Google Scholar 

  • White R.S., McKenzie D. & O’Nions R.K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions, J. Geophys, Res, 97,19683–19715.

    Article  Google Scholar 

  • White R.S., Spence G.D., Fowler S.R., McKenzie D.P., Westbrook G.K. & Bowen A.N., 1987. Magmatism at rifted continental margins, Nature, 330,439–444.

    Article  Google Scholar 

  • Zehnder C.M., Mutter J.C. & Buhl P., 1990. Deep seismic and geochemical constraints on the nature of rift-induced magmatism during breakup of the North Atlantic, Tectonophysics, 173, 545–565.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Eldholm, O., Skogseid, J., Planke, S., Gladczenko, T.P. (1995). Volcanic Margin Concepts. In: Banda, E., Torné, M., Talwani, M. (eds) Rifted Ocean-Continent Boundaries. NATO ASI Series, vol 463. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0043-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0043-4_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4024-2

  • Online ISBN: 978-94-011-0043-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics