Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 285))

Abstract

The dielectric optical waveguide has been in existence for nearly 40 years[1]. Early research was focused at fibre bundles for image transmission, but even after pioneering papers by Spitzer on the weakly guiding phenomenon[2] it was several years later that glass optical fibres were recognised for their transmission potential[3]. Since then, a revolution has occurred: silica based optical fibre waveguides with transmission loss at a wavelength of 1550nm of less than 0.2dB/km have been routinely manufactured and long distance optical fibre transmission at gigabit rate has had a profound impact on communications. Along with this major advance, it has become apparent that low loss optical fibres are an ideal candidate for the investigation of a host of linear and nonlinear phenomena at modest optical powers. These include Rayleigh, Mie and Raman scattering[4–6], optical Kerr effect[7] all optical fibre amplification and fibre lasers[8] using rare-earth dopants such as erbium and neodymium in the silica host, all optical switching[9], soliton transmission[10], as well as the discovery of new phenomena such as photosensitivity[11] and optical damage at low optical powers[12]. Nonlinear optics[13–14] has been known since the invention of the laser, however, low loss optical fibres have made it possible to observe almost all non-linear effects; surprisingly, even material symmetry forbidden phenomena such as efficient second-harmonic generation, associated with crystalline media[11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kapany N S, J Opt Soc Am 49, 779, 1959, and references therein.

    Article  ADS  Google Scholar 

  2. Snitzer E, J Opt Soc Am 51, 491, 1961

    Article  MathSciNet  ADS  Google Scholar 

  3. Kao K C and Hockham G H, Proc IEEE 113, 1151, 1966.

    Google Scholar 

  4. Ainslie B J and Day C R, J Lightwave Technol., LT-4, 967, 1986.

    Article  ADS  Google Scholar 

  5. Stolen R H, Ippen E P and Tynes A R, Appl Phys Lett 20, 62, 1962.

    Article  ADS  Google Scholar 

  6. Ippen E P and Stolen R H, Appl Phys Lett 21, 539, 1972.

    Article  ADS  Google Scholar 

  7. Stolen R H and Ashkin A, Appl Phys Lett 22, 294, 1973.

    Article  ADS  Google Scholar 

  8. Desurvire E,Optics and Photonics News 2, 6, 1991.

    Article  ADS  Google Scholar 

  9. Blow K J, and Smith K, BT Technol J 11(2), 1993.

    Google Scholar 

  10. Hasegawa A and Tappert F, Appl Phys Lett 23, 142, 1973.

    Article  ADS  Google Scholar 

  11. Hill K O, Fujii Y, Johnson D C and Kawasaki B S, Appl Phys Lett 32, 647, 1978.

    Article  ADS  Google Scholar 

  12. Kashyap R and Blow K J, Electorn Lett 24, 47, 1988.

    Article  ADS  Google Scholar 

  13. Franken P A, Hill A E, Peters C W and Weinreich G, Phys Rev Lett 7, 118, 1961.

    Article  ADS  Google Scholar 

  14. Bloembergen N, Nonlinear Optics (W A benjamin, Inc, New York, 1965).

    Google Scholar 

  15. Osterberg U and Margulis W, Opts Lett 11, 516, 1986.

    Article  ADS  Google Scholar 

  16. Kleinman D A, Phys Rev 12, 1977, 1962.

    Google Scholar 

  17. Flytzanis C, in Quantum Electronics Vol 1, ed H Rabin and C L Tang, Academic Press, 1975.

    Google Scholar 

  18. Butcher P N and Cotter D, The Elements of Nonlinear Optics, Cambridge Studies in Modem Optics: 9, Press Syndicate of the University of Cambridge, 1990.

    Book  Google Scholar 

  19. Hanna D C, Yuratitch and Cotter D, in Nonlinear Optics of Free Atoms and Molecules, Springer Series in Optical Sciences Vol 17, Springer Verlag, 1979.

    Google Scholar 

  20. Kielich S, Chem Phys Letts 2, 569, 1968.

    Article  ADS  Google Scholar 

  21. Marcuse D, in Theory of Dielectric Optical Waveguides, Academic Press, 1974.

    Google Scholar 

  22. Kielich S, in Nonlinear Optics, Molecular Electro-Optics: Part I - Theory and Method, Ed. O’Konski C T, Chapter 12, Marcel Dekker Inc 1976.

    Google Scholar 

  23. Maker P D, Terhune R W and Savage C M, Phys Rev Lett 12, 507, 1964.

    Article  ADS  Google Scholar 

  24. Dziedzic J M, Stolen R H and Ashkin A, Appl Opts 20, 1403, 1981.

    Article  ADS  Google Scholar 

  25. Trillo S, Wabnitz S, Finlayson N, Banyai W C, Seaton C T and Stegeman G I, Appl Phys Lett 53, 837, 1988.

    Article  ADS  Google Scholar 

  26. Morioka T and Saruwatari M, IEEE J Select Areas Comm 6, 1186, 1988.

    Article  Google Scholar 

  27. Trillo S, Wabnitz S, Stolen R H, Assanto G, Seaton C T and Stegeman G I, Appl Phys Lett 49, 1224, 1986.

    Article  ADS  Google Scholar 

  28. Finlayson N, Nayar B K and Doran N J, Electron Lett 27, 1209, 1991.

    Article  Google Scholar 

  29. Winful H G, Opts Lett 11, 33, 1986.

    Article  ADS  Google Scholar 

  30. Daino B, Gregori G and Wabnitz S, Opts Lett 11, 43, 1986.

    Google Scholar 

  31. Feldman S F, Weinberger D A and Winful H G, Opts Lett 15, 311, 1990.

    Article  ADS  Google Scholar 

  32. Ferro P, Haelterman M, Trillo S, Wabnitz S and Daino B, Electron Lett 27, 1408, 1991.

    Article  Google Scholar 

  33. Agrawal G P, Nonlinear Fibre Optics, Quantum Electronics - Principles and Applications, Ed. Liao P F and Kelley P L, Academic Press, 1989.

    Google Scholar 

  34. Kashyap R and Finlayson N, Opts Lett 17, 407, 1992.

    ADS  Google Scholar 

  35. Nayar B K and Vanherzeele H, IEEE Photon Technol Lett 2, 603, 1990, and references therein.

    Article  ADS  Google Scholar 

  36. Kitayama K, Kimura Y and Sasaki S, Appl Phys Lett 46, 623, 1985.

    Article  ADS  Google Scholar 

  37. Winful H G, Appl Phys Lett 47, 213, 1985.

    Article  ADS  Google Scholar 

  38. Cotter D and Hill A M, Electron Lett 20, 185, 1984.

    Article  Google Scholar 

  39. Olsson, Hegarty J, Logan R A, Johnson L F, Walker K L, Cohen L G, Kasper B L and Campbell J C, Electron Lett 21, 105, 1985.

    Article  ADS  Google Scholar 

  40. Stolen R H and Ippen E P, Appl Phys Lett 22, 276, 1973.

    Article  ADS  Google Scholar 

  41. Davey S T, Williams D L, Ainslie B J, Rothwell W J M and Wakefield B, IEE Proc 136 Pt J, 301, 1989.

    Google Scholar 

  42. Desurvire E, Papuchon M, Pocholle J P, Raffy J and Ostrowsky D B, Electron Lett 19, 751, 1983.

    Article  ADS  Google Scholar 

  43. Jain R K, Lin C, Stolen R H,Pleibel W and Kaiser P, Appl Phys Lett 30, 162, 1977.

    Article  ADS  Google Scholar 

  44. Stolen R H, Gordon J P, Tomlinson W J and Haus H, J Opt Soc Am B, 6, 1159, 1989.

    Article  ADS  Google Scholar 

  45. Blow K J and Wood D, IEEE J Quant Electron 25, 2665, 1989.

    Article  ADS  Google Scholar 

  46. Grudinin A B, Dianov E M, Korobin D V, Prokhorov A M, Serkin V N and Khaidarov, JETP 34, 62, 1972.

    Google Scholar 

  47. Terhune R W and Weinberger D A, J Opt Soc Am B 4, 661, 1987.

    Article  ADS  Google Scholar 

  48. Kashyap R, J Opt Soc Am B 6, 313, 1989.

    Article  ADS  Google Scholar 

  49. Kashyap R, Davey S T and Williams D L, “First Observation of phase-matched intrinsic second-harmonic generation in optical fibres”, in OSA Annual Meeting Technical Digest 1990, Vol 15 of the OSA Technical Digest Series (Optical Society of America, Washington D.C., 1990), pages 105–106.

    Google Scholar 

  50. Kamal A, Stock M L, Sapak A, Thomas C H, Weinberger D A, Frenkel M Y, Nees J, Ozaki K, Valdmanis J, in Optical Soc Am Annual Meeting Technical Digest, (OSA, Washington D C, Paper PD24 (1990).

    Google Scholar 

  51. Stolen R H and Tom H W K, Opts Lett 12, 585, 1987.

    Article  ADS  Google Scholar 

  52. Fairy M C, Fennann M E and Russell P St J, in Proc of Topical Meeting on nonlinear Guided Wave Phenomenon: Physics and Applications, pp246–249, 1989.

    Google Scholar 

  53. Bamova N B and Zeldovich B Ya, JEPT Lett 45, 717, 1987.

    ADS  Google Scholar 

  54. Anderson D Z, Mizrahi V and Sipe J E, Opts Lett 16, 796, 1989.

    Article  ADS  Google Scholar 

  55. Kashyap R, Borgonjen E and Campbell R C, SPIE 2044, 202, 1993.

    Article  ADS  Google Scholar 

  56. Margulis W, Carvalho I C S, Lesche B, SPIE 1516, 60, 1991.

    Article  ADS  Google Scholar 

  57. Lavvandy N M, Opts Lett 14, 571, 1992.

    Google Scholar 

  58. Kashyap R, Armitage J R, Wyatt R, Davey S T and Williams D L, Electron Lett 26(11), 730, 1990.

    Article  ADS  Google Scholar 

  59. Meltz G, Morey W W and Glenn W H, Opts Lett 14(15), 823, 1989.

    Article  ADS  Google Scholar 

  60. Dawes E L and Marburger,J H, Phys Rev Letts 27, 905, 1971.

    Article  Google Scholar 

  61. Reintjes J F, in “Nonlinear optical parametric processes in liquids and gasses”, Quantum Electronics: Principles and Applications, Chapter 5, pp 333–334, Academic Press Inc, 1984.

    Google Scholar 

  62. Kashyap R, “Self propelled self-focusing damage in optical fibres”, in Proc of the international Conference on Lasers ‘87, Dec 7–11 1987, Ed Duarte F J, STS Press.

    Google Scholar 

  63. Kean P N, Smith K and Sibbett W, IEE Proc Vol 134, Pt J, 163, 1987.

    Google Scholar 

  64. Kim K S, Stolen R H, Reed W A and Quoi K W, Opts Lett 19, 257, 1994.

    Article  ADS  Google Scholar 

  65. Manning R J, Kashyap R, Oliver S N and Cotter D, in Proc of the Topical Meeting on Integrated Photonics Research, 1993.

    Google Scholar 

  66. Nayar B K, Finlayson N, Doran N J, Davey S T, Williams D L and Arkwright J W, Opts Lett 16, 408, 1991.

    Article  ADS  Google Scholar 

  67. Doran N J, Forrester D S and Nayer B K, Electron Lett 25, 267, 1989.

    Article  Google Scholar 

  68. Stegemen G I and Stolen R H, J Opt Soc Am B 6, 267, 1989.

    Article  Google Scholar 

  69. Meier J E and Heinlein, in Proceedings of The Second Optical FibresMeasurements Conference ‘83, IIC, Turin, Sept 21–22 1993, pp125–128.

    Google Scholar 

  70. Kashyap R and Finlayson N, in Proc of Nonlinear Guided Wave Phenomena, 1991, (Optical Society of America, Washington D C, 1991), Vol 15, pp74–77.

    Google Scholar 

  71. Kashyap R, in Proceedings of The Second Optical FibresMeasurements Conference ‘83, IIC, Turin, Sept 21–22 1993, pp119–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kashyap, R. (1995). Nonlinear Optical Fibres. In: Soares, O.D.D. (eds) Trends in Optical Fibre Metrology and Standards. NATO ASI Series, vol 285. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0035-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0035-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4020-4

  • Online ISBN: 978-94-011-0035-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics