Skip to main content

Optical Fiber Communication Technology and System Overview

  • Chapter
Trends in Optical Fibre Metrology and Standards

Part of the book series: NATO ASI Series ((NSSE,volume 285))

Abstract

Basic elements of an optical fiber communication system include the transmitter (laser or LED), fiber (multimode, single mode, dispersion-shifted) and the receiver (PIN and APD detectors, coherent detectors, optical preamplifiers, receiver electronics). Receiver sensitivities of digital systems are compared on the basis of the number of photons-perbit required to achieve a given bit-error-probability, and eye-degradation and error-floor phenomena are described. Laser relative-intensity-noise and nonlinearities are shown to limit the performance of analog systems. Networking applications of optical amplifiers and wavelength division multiplexing are considered, and future directions discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kao, C.K. and Hockham, G.A. (1966) Dielectric-fiber surface waveguides for optical frequencies, Proc. IEE, 113 1151–1158.

    Google Scholar 

  2. Kapron, F.P., et.al.(1970) Radiation losses in glass optical waveguides, Appl. Phys. Lett.,17, 423.

    Article  ADS  Google Scholar 

  3. Hayashi, I., Panish, M.B. and Foy, P.W. (1970) Junction lasers which operate continuously at room temperature, Appl. Phys. Lett., 17, 109.

    Article  ADS  Google Scholar 

  4. Jacobs, Ira (1986) Fiber-optic transmission and system evolution, in T.C. Bartee (ed), Digital Communications, Howard W. Sams & Co., Indianapolis.

    Google Scholar 

  5. Gloge, D. (1971) Weakly guiding fibers, Applied Optics, 10 2252–2258.

    Article  ADS  Google Scholar 

  6. Olshansky, R. and Keck, D. (1976) Pulse broadening in graded index fibers, Appl. Optics, 15 483–491.

    Article  ADS  Google Scholar 

  7. Gloge, D, Marcatili, E.A.J., Marcuse, D. and Personick, S.D. (1979) Dispersion properties of fibers, in S.E. Miller and A.G. Chynoweth, (eds), Optical Fiber Telecommunications, Academic Press, San Diego.

    Google Scholar 

  8. Namihira, Y. and Wakabayashi, H.,(1991) Fiber length dependence of polarization mode dispersion measurements in long-length optical fibers and installed optical submarine cables, J. Opt. Commun.,2,2.

    Google Scholar 

  9. Jones, W.B. Jr., (1988) Introduction to Optical Fiber Communication Systems, Holt, Rinehart and Winston, New York, 90–92.

    Google Scholar 

  10. Bellcore, (1986) Digital Fiber Optic Systems Requirements and Objectives Technical Advisory TA-TSY-000038, Issue 3.

    Google Scholar 

  11. Cohen, L.G., Mammel, W.L. and Jang, S.J. (1982) Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km.nm over the 1.28μm - 1.65μm wavelength range, Electron. Lett.,18,1023–1024.

    Article  ADS  Google Scholar 

  12. Keiser, G. (1991) Optical Fiber Communications, 2nd Edition, Ch. 5, McGraw Hill, New York.

    Google Scholar 

  13. Bowers, J.E. and Pollack, M.A. (1988) Semiconductor lasers for telecommunications, in S.E. Miller and I.P. Kaminow (eds), Optical Fiber Telecommunications II, Academic Press, San Diego.

    Google Scholar 

  14. Tsang, W.T. (1985) The cleaved-coupled-cavity (C3) laser, Semiconductors and S’emimetals,22 part B 257–373.

    Article  Google Scholar 

  15. Kobayashi, K. and Mito, I. (1988) Single frequency and tunable laser diodes, J. Lightwave Technol., 6, 1623–1633.

    Article  ADS  Google Scholar 

  16. Mukai, T. and Yamamoto, Y. (1984) AM quantum noise in 1.3 μm InGaAsP lasers, Electron. Lett., 20, 29–30.

    Article  ADS  Google Scholar 

  17. Green, P.E. Jr., (1993) Fiber Optic Networks, Ch. 8, Prentice Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  18. Personick, S.D. (1973) Receiver design for digital fiber optic communication systems I, Bell Syst. Tech. J., 52 843–874.

    Google Scholar 

  19. Forrest, S.R. (1988) Optical detectors for lightwave communication, Ch. 14 in S.E. Miller and I.P. Kaminow (eds), Optical Fiber Telecommunications II, Academic Press, San Diego.

    Google Scholar 

  20. Gimlett, J.L. and Cheung, N.K. (1989) Effects of phase-to-intensity noise conversion by multiple reflections on gigabit-per-second DFB laser transmisssion systems, J. Lightwave Technol., LT-7 888–895.

    Article  ADS  Google Scholar 

  21. Ogawa, K. (1982) Analysis of mode partition noise in laser transmission systems,“ IEEE J. Quantum Electron., QE-18 849–855.

    Article  ADS  Google Scholar 

  22. Tran, D.C., Sigel, G.H. and Bendow, B. (1984) Heavy metal fluoride fibers: A review, J. Lightwave Technol., LT-2, 566–586.

    Article  ADS  Google Scholar 

  23. Henry, P.S. (1989) Error-rate performance of optical amplifiers, Optical Fiber Communications Conference (OFC’89) Tech. Dig., THK3.

    Google Scholar 

  24. Gautheron, O., Grandpierre, G., Pierre, L., Thiery, J.-P and Kretzmeyer, P. (1993) 252 km repeaterless 10 Gbits/s transmission demonstration,“ Optical Fiber Communications Conference (OFC’93) Postdeadline Papers., PD11.

    Google Scholar 

  25. Stanley, I.W. (1985) A tutorial review of techniques for coherent optical fiber transmission systems, IEEE Commun. Mag.,23 37–53.

    Article  Google Scholar 

  26. Green, P.E. and Ramaswami, R. (1990) Direct detection lightwave systems: why pay more? IEEE LCS, 1 36–49.

    Article  Google Scholar 

  27. Agrawal, G.P. (1992) Fiber Optic Communication Systems, Ch. 8, John Wiley & Sons, New York.

    Google Scholar 

  28. Bellcore, (1992) Generic Requirements for Optical Fiber Amplifier Performance,Technical Advisory TA-NWT-001312, Issue 1.

    Google Scholar 

  29. Jacobs, Ira (1994) Dependence of optical amplifier noise figure on relative-intensitynoise,“ submitted to J. Lightwave Technol.

    Google Scholar 

  30. Li, T. (1993) The impact of optical amplifiers on long-distance lightwave telecommunications, Proc. IEEE, 81 1568–1579.

    Article  Google Scholar 

  31. Jacobs, Ira (1990) Effect of optical amplifier bandwidth on receiver sensitivity, IEEE Trans. Commun., 38 1863–1864.

    Article  Google Scholar 

  32. Naka, A. and Saito, S. (1994) In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion,“ J. Lightwave Technol. 12 280–287.

    Article  ADS  Google Scholar 

  33. Agrawal, G.P. (1989) Nonlinear Fiber Optics, Ch. 5, Academic Press, Boston.

    Google Scholar 

  34. Kikuchi, K. and Lorattanasane, C. (1994) Compensation for pulse waveform distortion in ultra-long distance optical communication systems by using midway optical phase conjugator, IEEE Photon. Technol. Lett., 6 104–105.

    Article  ADS  Google Scholar 

  35. Green, P.E. Jr. (1990) Fiber Optic Networks, Ch. 11, Prentice Hall.

    Google Scholar 

  36. Goodman, M. (1989) Multiwavelength networks and new approaches to packet switching, IEEE Commun. Mag., 27, 27–35.

    Article  Google Scholar 

  37. Smith, P.J., Faulkner, D.W. and Hill, G.R. (1993) Evolution scenarios for optical telecommunication networks using multiwavelength transmission, Proc. IEEE,81 1580–1587.

    Article  Google Scholar 

  38. Darcie, T.E., Nawata, K. and Glabb, J.B. (1993) Special issue on broad-band lightwave video transmission, J. Lightwave Technol., 11, no. 1.

    Google Scholar 

  39. Saleh, A.A.M. (1989) Fundamental limit on number of channels in SCM lightwave CATV system, Electron. Lett. 25 776–777.

    Article  ADS  Google Scholar 

  40. Chung, C.J., and Jacobs, Ira (1992) Practical TV channel capacity of lightwave multichannel AM SCM systems limited by the threshold nonlinearity of laser diodes, IEEE Photon. Technol. Lett., 4 289–292.

    Article  ADS  Google Scholar 

  41. Baack, C. and Walf, G. (1993) Photonics in future telecommunications, Proc. IEEE, 81 1624–1632.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jacobs, I. (1995). Optical Fiber Communication Technology and System Overview. In: Soares, O.D.D. (eds) Trends in Optical Fibre Metrology and Standards. NATO ASI Series, vol 285. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0035-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0035-9_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4020-4

  • Online ISBN: 978-94-011-0035-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics