Skip to main content

Fibre Characterization and Measurements

  • Chapter
  • 521 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 285))

Abstract

Propagation of light in free-space can not be reliably used due to the significant wave diffraction and to the dependence of the attenuation on atmospheric conditions. Therefore, it is to use the guided propagation of light by using a convenient medium: the optical fibre. The story of optical fibres started in 1963 with the first realization of a semiconductor laser diode emitting at 0.8 μm. In 1970, these laser diodes became stable, powerfull and reliable enough to start the first studies on optical fibres. From 100 to 1000 dB/km in glasses, the fibre attenuation at 0.85 μm then decreased to 20 dB/km in 1970 and down to 0.5 dB/km in 1973. At the beginning of the eighties the theoretical attenuation limit of 0.15 dB/km at 1.55 μm was almost reached. In the middle of the eighties, optical fibres could easily be tailored with common attenuation values of 0.35 dB/km at 1.3 μm and 0.2 dB/km at 1.55 μm. As a consequence, in 1988, the first transatlantic link was realized with 6000 km of single-mode fibre using a signal rate of 280 MBit/s at 1.3 μm. To take advantage of the lowest attenuation, the interest was to work at 1.55 μm. However, the fibre dispersion is greater at 1.55 μm than at 1.3 μm: 20 ps/(nm.km) compared with a maximum of 5 ps/(nm.km). So the dispersion became the limiting factor in high speed transmission. Therefore, new kinds of fibre were designed with a dispersion lower than 5 ps/(nm.km) at 1.55 μm. An instance for their use is the transatlantic link planned in 1996 that will use dispersion shifted fibres supporting a rate of 5 GBit/s at 1.55 μm. Such high performance evidences the need for accurate attenuation and dispersion measurements. The characterization of those parameters will be described in two different sections of this article. If we consider the practical use of fibre, the fibre to fibre coupling losses become the actual limiting factor. That points out the need for the fibre geometrical characteristics measurements that are presented first in this article. Finally, single-mode fibre measurements, cut-off wavelength and mode field diameter, will be presented. Due to their specific status and role, calibration laboratories acting in the optical fibre domain, must use test methods which comply with the international standards given in the references [1 to 6], to issue certificates of calibration for their customers. Therefore, this article presents results obtained by these standard methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. International standard IEC 793–1, (11/92), Optical Fibres - Part 1: Generic Specification, International Electrotechnical Commission (IEC).

    Google Scholar 

  2. International standard IEC 793–1, (1I/92), Optical Fibres - Part 2: Products Specifications, International Electrotechnical Commission (IEC).

    Google Scholar 

  3. Recommandation UIT-T G.650, (03 /93), Définition et méthodes d’essai des paramètres pour les fibres monomodes, Union Internationale des Télécommunications (UIT).

    Google Scholar 

  4. Recommandation UIT-T G.651, (03/93), Caractéristiques d’un câble à fibres optiques nuthimodesà gradient d’indice 50/125 tun, Union Internationale des Télécommunications (UIT).

    Google Scholar 

  5. Recommandation UIT-T G.652, (03/93), Caractéristiques des câbles àfibres optiques monomodes, Union Internationale des Télécommunications (UIT).

    Google Scholar 

  6. Recommandation UIT-T G.653, (03/93), Caracteristiques des câbles à fibres optiques monomodes à dispersion décalée, Union Internationale des Télécommunications (UIT).

    Google Scholar 

  7. D. Marcuse, (1981), Principles of Optical Fibre Measurements, Academic Press.

    Google Scholar 

  8. M. Young, (1991), Fibre cladding diameter measurement by contact micrometry, Conference Digest, OFMC’ 91, York (UK), pp. 123–126.

    Google Scholar 

  9. COST 217 Group, (1989), Interlaboratoty measurement campaign on single-mode fibres, IEEE Proceedings, pp. 307–314.

    Google Scholar 

  10. M. Young, (1990), Standards for optical fibre geometry measurements, Technical Digest, Symposium of Optical Fibre Measurements, Boulder, Colorado (USA).

    Google Scholar 

  11. W. T. Kane, (1991), The First international fibre geometry Round Robin, Conference Digest, OFMC’ 91, York (UK), pp. 119–122.

    Google Scholar 

  12. M. Monerie, (1990), Optique unimodale et mesure,CNET, cours ENSSAT, Lannion.

    Google Scholar 

  13. P. A. Perrier, (1994), Systèmes de transmission sur fibres optiques, tech. pub. Alcatel CIT.

    Google Scholar 

  14. A. Cozannet & al., (1981), Optiques et Télécommunications.: Transmission et iraitement optique de rinformation,CNET-ENST, Eyrolles, Paris.

    Google Scholar 

  15. J. C. Bizeul & al., (1984), Mesures de transmission et de géométric., Note technique, Centre National d’Etude des Telecommunications (CNET).

    Google Scholar 

  16. F. M. E. Sladen & al., (1986), Chromatic dispersion measurements on long fibre lengths using LEDs, Electronic Letters, Vol.22, pp. 841–842.

    Article  Google Scholar 

  17. A. J. Barlow and I. Mackenzie, (1987), Direct measurements of chromatic dispersion by the differential phase shift technique, Technical Digest OFC/IOOC’87, Reno (USA).

    Google Scholar 

  18. D. Gloge, (1976), Weakly Guiding Fibres,Optical Fibre Technology, IEEE Press, New York (USA), pp. 178–184.

    Google Scholar 

  19. E. Miller, E. A. J. Marcatili and T. Li, (1976), The transmission medium,Optical Fibre Technology, IEEE Press, New York (USA), pp. 5–26.

    Google Scholar 

  20. D. Marcuse, (1978), Gaussian approximation of the fundamental mode offibres, J.O.S.A., Vol.68, pp. 103–109.

    Google Scholar 

  21. K. Petermann, (1983), Constraints for fundamental mode spot size for broadband dispersion-compensated single-mode fibres,Electronic Letters, Vol.19, pp. 712–714.

    Article  Google Scholar 

  22. G. Kuyt, COST 217 Group, (1991), COST 2171nterlaboratoty comparison of uncabled and cabled fibre cut-off wavelength measurements, OFMC’ 91 Conference Digest, York (UK), pp. 12–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Men, C.L. (1995). Fibre Characterization and Measurements. In: Soares, O.D.D. (eds) Trends in Optical Fibre Metrology and Standards. NATO ASI Series, vol 285. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0035-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0035-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4020-4

  • Online ISBN: 978-94-011-0035-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics