Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 285))

  • 526 Accesses

Abstract

The optical amplifier has made a significant impact on the design and implementation of photonic networks. This chapter provides a summary of the rapid development of a number of optical amplifier geometries; rare earth doped and non-linear fibre and semiconductor laser amplifiers. Their theory of operation and performance will be discussed; comparisons will be drawn between each type; and their application areas will be highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edagawa N (1993) Applications of Fiber Amplifiers to Telecommunication Systems“, Chapter 12, pp536–647 in ”Rare Earth Doped Fiber Lasers and Amplifiers“ M F J Digonnet (Ed)

    Google Scholar 

  2. Li, T (1993) “The Impact of Optical Amplifiers on Long Distance Lightwave Teleconununcations”Proc IEEE, Vol 81, pp1568–1579

    Article  Google Scholar 

  3. Smith, R G (1972) “Optical power handling capacity of low loss optical fibres as determined by stimulated Raman and Brillouin scattering”App! Opt, Vol.11, pp2489–2494

    Article  Google Scholar 

  4. Cotter, D (1982) “Observation of stimulated Brillouin scattering in low-loss silica fibre at 1.3p. m”Elect.Lett, Vol.18, pp495–496

    Article  Google Scholar 

  5. O’Mahony M (1988) “Semiconductor Laser Optical Amplifies for use in Future Fiber Systems”,IEEE J. Light Tech., Vol LT-6, pp531–544

    Article  Google Scholar 

  6. Kobayashi S (1984) “Semiconductor Optical Amplifiers”IEEE Spectrum, pp26–33

    Google Scholar 

  7. Yamamoto Y (1980) “Characteristics of AIGaAs Fabzy Perot Cavity type laser amplifiers”IEEE J. Quant. Electron., Vol QE-16, pp1047–1052

    Article  ADS  Google Scholar 

  8. O’Mahony M, Marshall, I M, Westlake, H J (1987) “Semiconductor laser amplifiers for optical communications systems”,British Telecom Tech. J. Vol.5, No.3

    Google Scholar 

  9. Westbrook, L D “Measurements of dg/dN and dn/dN and their dependence on photon energy in 1.5p.m InGaAsP laser diodes”,Proc IEE, Vol 133, pp135–141

    Google Scholar 

  10. Adams M J, Collins J V, Henning I D (1985) “Analysis of semiconductor laser optical amplifiers”Proc IEE, Vol.132, pp58–63

    Google Scholar 

  11. Mukai, T, Yamamoto, Y, Kimura T (1983) “Optical direct amplification for fiber transmission”Rev. Elec. Commun.Lab, Vol.31, p340

    Google Scholar 

  12. Adams, M J Westlake, H J O’Mahony, M Henning, I D (1985) “A comparison between active and passive bistability in semiconductors”IEEE J QuantElect. Vol QE-21

    Google Scholar 

  13. Mukai T (1981) “Gain, frequency bandwidth and saturation output power of AlGaAs DH laser amplifiers”IEEE J Quant.Elect., Vol QE-17, pp1028–1034

    Article  ADS  Google Scholar 

  14. Saitoh T, Mukai T Mikami O (1985) “Theoretical analysis and fabrication of anti reflection coatings on laser diode facets”,IEEE J Light. Tech., Vol LT-3, pp288–293

    Article  Google Scholar 

  15. O’Mahony M (1985) “Low reflectivity semiconductor laser amplifier with 20dB fibre-to fibre gain at 1500nm”Elect.Lett, Vol.21, pp501–502

    Google Scholar 

  16. Ramaswami R (1990) “Amplifier induced crosstalk in multichannel optical networks”IEEE J Light. Tech., Vol. LT-8, pp1882–1896

    Article  Google Scholar 

  17. Cole S, Cooper D M, Devlin W J, Ellis A D, Elton D J, Isaac J, Sherlock G, Spurdens P C, Stallard W A, (1989)Elect.Lett. Vol 25, pp314–316

    Article  Google Scholar 

  18. Shimoda K (1957) “Fluctuation in amplification of quanta with application to maser amplifiers”,J Phys.Soc. Japan, Vol.12, pp686–700

    Article  ADS  Google Scholar 

  19. Yariv A (1991) “Optical Electronics” Holt

    Google Scholar 

  20. Mukai T (1982) “S/N and error rate performance in A1GaAs semiconductor laser preamplifier and linear repeater system”,IEEE J Quant. Elect., Vol QE-I8, pp751–753

    Google Scholar 

  21. Olsson, N A (1989) “Lightwave systems with optical amplifiers”IEEE J Light. Tech., Vol. LT-7, pp1071–1082

    Article  Google Scholar 

  22. Mukai, T (1987) “5.2dB noise figure in a 1.51.an InGaAsP travelling wave laser amplifier”,Elect. Lett, Vol.23, pp216–217.

    Article  MathSciNet  Google Scholar 

  23. Malyon, D J, Elton, D J, Regnault, J C, McDonald, S J, Devlin, W J, Cameron, K H, Bird, D M, Stallard, W A (1989) “Direct detection transmission experiment at 565 Mbits/s using cascaded in line optical amplifiers”,Elect.Lett., Vol.25, pp236–237

    Article  Google Scholar 

  24. Malyon, D J, Stallard, W A (1989) “Bidirectional multilaser amplifier systems experiment” Elect. Lett., Vol.25, pp1366–1368

    Article  Google Scholar 

  25. Blank, L C, Cox, J D (1989) “Optical time domain reflectometry on optical amplifier systems”IEEE J. Light. Tech., Vol LT-7, pp1549–1555

    Article  Google Scholar 

  26. Kalman, R F, Kazovsky, L G, Goodman J W, “Space division switches based on semiconductor optical amplifiers”,IEEE Phot.Tech.Lett., Vol, 4, pp1048–1051

    Google Scholar 

  27. Westlake H J, Adams, M J, O’Mahony M “Measurement of optical bistability in an InGaAsP laser amplifier at 1.5p.m”Elect.Lett., Vol.21, pp992–993

    Google Scholar 

  28. Weich, K, Hover, J, As, D J, Eggemann, R, Mohrle, M, Patzak, E “2.5 Gbits/s all-optical clocked decision and retiming circuit using bistable semiconductor lasers” (1994)Elect.Lett., Vol.30, pp784–785

    Article  ADS  Google Scholar 

  29. Sherlock G (1991) “1.3nm MQW semiconductor optical amplifiers with high gain and output power”,Elect.Lett., Vol.27., pp165–166

    Article  Google Scholar 

  30. Tabuchi M (1990) “External grating tunable MQW laser with wide tuning of 240nm”,Elect.Lett., Vo.26, pp742–744

    Article  Google Scholar 

  31. Digonnet, M J F (Ed) (1993) “Rare earth doped fiber lasers and ampliifers”, Dekker

    Google Scholar 

  32. France P (Ed) (1992) “Optical fiber lasers and amplifiers”, Mackie

    Google Scholar 

  33. Miniscalco W J (1991) “Erbium-doped glasses for fibre amplifiers at 1500nm”IEEE J Light. Tech, Vol. LT-9, pp234–250

    Article  Google Scholar 

  34. Armitage, J R (1988) “Three level fiber laser amplifier: A theoretical model”Appl.Opt., Vol.27, pp4831–4836

    Article  ADS  Google Scholar 

  35. Desurvire E, Simpson, J R (1989) “Amplification of spontaneous emission in erbium doped single mode fibres”,IEEE J. Light. Tech., Vol LT-7, pp835–845

    Article  Google Scholar 

  36. Dicke, G H, Crosswhite, W H (1963) “The doubly and triply ionised rare earths”App. Opt., Vol.2, pp675–680

    Article  ADS  Google Scholar 

  37. Laming, R I, Poole, S B, Tarbox, E J (1988) “Pump excited state absorpion in erbium doped fibers”,Opt. Lett., Vo113, pp1084–1086

    Article  ADS  Google Scholar 

  38. Shimuzu, M, Horiguchi M, Yamada, M, Nishi, I, Uehara G, Noda, J, Sugita, E (1990)Proc Int. Conf. Optical Fiber Communciations, Paper PD17

    Google Scholar 

  39. Shimuzu, M, Yamada, M, Horiguchi, M, Takeshita, T, Okayazu, M, (1990) “Erbium doped fiber amplifiers with an extremely high gain coefficient of 11dB/mW”Elect. Lett., Vol.26, pp1641–1643

    Article  Google Scholar 

  40. Desurvire, E, Giles, C R, Simpson, J R, Zyskind, J L (1989) “Efficient erbium doped fibre amplifier at a 1.53nm wavelength with a high output saturation power”,Opt. Lett., Vo114, pp 1266–1268

    Article  ADS  Google Scholar 

  41. Mears, R J, Reekie, L, Jauncey, I M, Payne, D N (1987) “Low noise erbium doped fibre ampifier operating at 1.54nm”.Elect.Lett., Vol.23, pp1026–1028

    Article  Google Scholar 

  42. Atkins, C H, Massicott, J F, Armitage, J R, Wyatt, R, Ainslie, B J, Craig-Ryan, S T (1989) “High gain, broad spectral bandwidth erbium doped fiber amplifier pumped near 1.5um”Elect. Lett., Vol.15, pp910–912

    Article  Google Scholar 

  43. Kimura, Y (1992) “Gain characteristics of erbium doped fiber amplifiers with high erbium concentration”Elect. Lett., Vol.28, pp1420–1422

    Article  Google Scholar 

  44. Giles, C R, Desurvire, E, Tatman, J R, Simpson, J R, Becker, P C (1989) “2 Gbit/sec signal amplification at 7,.=1.531.1m in an erbium doped single mode fiber amplifier”,IEEE J Light. Tech, Vol LT-7, pp651–656

    Article  Google Scholar 

  45. Massicott, J R, Wyatt, R, Ainslie, B J, Craig-Ryan, S P (1990) “Efficient, high power, high gain Er3+ doped silica fiber amplifier”.Elect. Lett., Vo116, pp1038–1039

    Article  Google Scholar 

  46. Pettitt, M J (1989) “Crosstalk in erbium doped fiber amplifiers”,Elect.Lett, Vol.25, pp416–417

    Article  Google Scholar 

  47. Meli, F (1992) “Gain crosstalk in saturated EDFA for WDM applications”,Elect.Lett., Vol.28, pp1896–1897

    Article  Google Scholar 

  48. Zyskind, J L (1992) “Erbium doped fiber amplifiers and the next generation of lightwave systems”,A T & T Tech. J. Jan-Feb, pp53–62

    Google Scholar 

  49. Desurvire, E (1990) “Analysis of noise figure spectral distribution in erbium doped fiber amplifiers pumped near 980nm and 1480nm”,Appl.Opt. Vol.29, pp3118–3123

    Article  ADS  Google Scholar 

  50. Desurvire, E (1990) “Spectral noise figure of Er3+ doped fiber amplifiers”,IEEE Photonics Tech.Lett., Vol.2, pp1071–1073

    Google Scholar 

  51. Tkach, R W (1992) “System implications of optical fiber non-linearities”, Tech Dig. OSA Annual Meet, paper WX1

    Google Scholar 

  52. Stolen, R H, (1979) “Nonlinear properties of optical fibers” inOptical Fiber Telecommuncations, S E Miller, A Chynoweth (Eds) pp125–150, Academic

    Chapter  Google Scholar 

  53. Davey, S T, Williams, D L, Spirit, D M, Ainslie, B J (1989) “The fabrication of low loss high NA silica fibres for Raman amplification”.Proc. SPIE Vol.1191, paper 19

    Google Scholar 

  54. Spirit, D M, Blank, L C (1989) “Raman asssisted long distance optical time domain reflectometry”Elect.Lett, Vol.25, pp1687–1688

    Article  Google Scholar 

  55. Ippen, E P, Stolen, R H (1972) “Stimulated Brillouin scattering in optical fibers”,Appl. Phys. Lett., Vol.21, pp539–542

    Article  ADS  Google Scholar 

  56. Shibata N, (1988)Opt.Lett, Vol.13, pp595–596

    Article  ADS  Google Scholar 

  57. Atkins, C G, Cotter, D, Smith D W, Wyatt, R (1986)Electiett, Vol.22, pp556–557

    ADS  Google Scholar 

  58. Shibata, N, Waarts, R G, Braun, R P, (1988)Opt.Lett., Vol.13, pp269–270

    Google Scholar 

  59. Olsson, N A, Van der Ziel, J P, (1987)IEEE J Light Tech., Vol.LT-5, pp147–152

    Article  Google Scholar 

  60. Ticach, R W, Chraplyvy, A R (1989)Proc Int. Con! Optical Fibre Communcations, Paper THG2

    Google Scholar 

  61. Aida K, Nishi S, Sata, Y, Hagimoto, K, Nakagawa K (1989) “1.8 Gbit/s 310km fibre transmission without outdoor repeater equipment using a remotely pumped in-line Er-doped fiber amplifier in an IM/DD system”,Tec.Dig. ECOC, paper PDA-7

    Google Scholar 

  62. Edagawa, N, Yoshida, Y, Taka, H, Yamamoto, S, Mochizuki, K, Wagabayashi, H (1989) “904km 1.2 Gbit/sec non-regenerative optical transmission experiment using 12 Er-doped fiber amplifiers”Tech. Dig. ECOC paper PDA-8

    Google Scholar 

  63. Saito, S, Imai, T, Sugie, T, Ohkawa, N, Ichihashi, Y, Ho, T, (1990) “An over 2200km coherent transmission experiment at 2.5GBit/s using erbium doped fiber ampifiers”Proc.Tech.Dig. OFC, paper PD2

    Google Scholar 

  64. Henry P S (1985) “Lighwave Primer”IEEE J QuantElect, Vol QE-21, pp1862–187

    Article  ADS  Google Scholar 

  65. Hagimoto K, Nishi, S, Nakagawa K (1990) Optical bit-rate flexible transmission system with a 5 Tbit.lcm capacity employing multiple in-line erbium doped fiber amplifiers“IEEE J Light. Tech., Vol.LT-8, pp1387–1395

    Article  Google Scholar 

  66. Fujita, S, Kitamura, M, Torikai, T, Henni, N, Yamada, H, Suzaki, T, Takano, I, Shikada, M, (1989) “10 Gbit/sec 100km optical fiber transmission exeriment using high speed MQW DFBLD and back illuminated GaInAs APD”Elect.Lett., Vol.25, pp702–703

    Article  Google Scholar 

  67. Marcuse, D (1991) “Single channel operation in very non-linear fibers with optical amplifiers at zero dispersion”,IEEE J Light.Tech. Vol. LT-9, pp356–361

    Article  Google Scholar 

  68. Taga, H, Yoshida, Y, Edagawa, N, Yamamoto, S, Wakabayashi, H (1990) “459km 2.4 Gbit/s four wavelength multiplexing optical fiber transmission experiment using six Er-doped fiber amplifiers”,Elect.Lett., Vol.26. pp500–501

    Article  Google Scholar 

  69. Eichen, E E, McCabre, J, Miniscalco, W J, Olshansky, R, Wei, T (1990) “FM microwave multiplexed broadband distribution systems using Er3+ fiber amplifiers and pre-amplifiers”,IEEE Photon. Tech. Lett., Vol.2, pp220–222

    Article  ADS  Google Scholar 

  70. Hasegawa, A (1990) “Optical Solitons in Fibers” Sringer Verlag

    Google Scholar 

  71. Iwatsuki, K, Nishi, S, Saruwatari, M, (1990) “2.8 Gbit/s optical soliton transmission employing all laser diodes”,Elect. Lett., Vol.26, pp1–2

    Article  Google Scholar 

  72. Suzuki, K, Nakazawa, M (1990) “Automatic optical soliton control using cascaded Er3+ doped fiber amplifiers”,Elect.Lett., Vol.26, pp1032–1034

    Article  Google Scholar 

  73. Mollenauer, L F, Neubelt, M J, Evangelides, S G, Gordon, J P, Simpson, J R, Cohen L G (1990) “Experimental study of soliton transmission over more than 10,000 km in dispersion shifted fiber”,Opt. Lett., Vol.15, pp1203–1205

    Article  ADS  Google Scholar 

  74. Davey, S T, Williams, D L, Spirit, D M, Ainslie, J B (1990) “Lossless transmission over 10km of low dispersion erbium doped fibre using only 15mW pump power”,Elect.Lett., Vol.26, pp1148–1149

    Article  Google Scholar 

  75. Nakazawa, M, Kimura, Y, Suzuki, K (1990) “Soliton transmission in a distributed, dispersion shifted erbium doped fiber amplifier”Top.Meet. Tech. Dig. “Optical Amplifiers and their Applications”, Paper TUA7.

    Google Scholar 

  76. Spirit, D M, Blank, L C, Williams, D L, Davey S T, Ainslie, B J (1990) “+10dBm lossless transmission in 10km distributed erbium fibre amplifier”,Elect Lett, Vol.26, pp1658–1659

    Article  Google Scholar 

  77. Wargner, S S (1987) “Optical amplifiers applications in fiber optic local networks”IEEE Trans. Comm. Vol., COM-35, pp419–426

    Article  Google Scholar 

  78. Blank, L C, Spirit, D M (1989).Elect.Lett., Vol.25, pp1693–1694

    Article  Google Scholar 

  79. Ainslie, B J, Craig, S P, Davey, S T (1987) “The fabrication and properties of Nd3+ in silica based optical fibers”Mater.Lett., Vol.5, pp143–146

    Article  Google Scholar 

  80. Miyajima, Y (1991) “Nd3+ doped fluoride fiber amplifier module with 10dB gain and high pump efficiency”,IEEE Photon.Rep., Vol.3, pp16–19

    Google Scholar 

  81. Shimuzu, M (1992) “Optical amplifiers and thier applications” paper PD3

    Google Scholar 

  82. Pedersen, J E (1990) “Noise characteristics of a neodymium doped fluoride fiber amplifier and its performance in a 2.4 Gbit/s sytems”, IEEEPhoto.Tech.Lett., Vol.2, pp750–752

    Article  ADS  Google Scholar 

  83. Suguawa, T (1992) “Noise characteristics of Pr3÷ doped fluoride fibre amplifier” Elect.Lett., Vol.28. pp246–247.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andonovic, I. (1995). Optical Amplifiers. In: Soares, O.D.D. (eds) Trends in Optical Fibre Metrology and Standards. NATO ASI Series, vol 285. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0035-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0035-9_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4020-4

  • Online ISBN: 978-94-011-0035-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics